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Selection of pairings reaching evenly across the data
(SPREAD): A simple algorithm to design maximally
informative fully crossed mating experiments

K Zimmerman1, D Levitis2, E Addicott1 and A Pringle3,4

We present a novel algorithm for the design of crossing experiments. The algorithm identifies a set of individuals (a ‘crossing-
set’) from a larger pool of potential crossing-sets by maximizing the diversity of traits of interest, for example, maximizing the
range of genetic and geographic distances between individuals included in the crossing-set. To calculate diversity, we use the
mean nearest neighbor distance of crosses plotted in trait space. We implement our algorithm on a real dataset of Neurospora
crassa strains, using the genetic and geographic distances between potential crosses as a two-dimensional trait space.
In simulated mating experiments, crossing-sets selected by our algorithm provide better estimates of underlying parameter
values than randomly chosen crossing-sets.
Heredity advance online publication, 30 September 2015; doi:10.1038/hdy.2015.88

INTRODUCTION

Researchers planning mating experiments are faced with a critical
design choice—deciding how many pairs and which pairs of indivi-
duals to mate. The number of crosses in a mating experiment can
influence the statistical estimates of genetic effects and combining
abilities (Jui and Lefkovitch, 1992). The selection of pairs to use in a
mating experiment also affects the outcome of the experiment. For
example, if the goal of a mating experiment is to understand the
genetic basis of a trait, as in quantitative trait locus analysis, then
parents should carefully be chosen to maximize the genetic diversity
among offspring and increase the likelihood of detecting quantitative
trait loci (Crepieux et al., 2004). The increasing accessibility of
population genetic and genomic datasets offer genetic data on more
individuals than can reasonably be used in most experiments
(Cushman, 2014). This poses a methodological problem: how to
choose a subsample of mating pairs that best reflects the range of cross
characteristics (in two or more dimensions of genetic, geographic or
ecological space) of the complete set of all available pairs.
One solution is to select a subsample that recapitulates the

characteristics of the larger set and preserves underlying relationships
between the variables used to define a trait space. The representative
subsample might mimic the broad distribution of crosses in the larger
set, in other words, it attempts to maintain the shape, clumps and so
on of the larger set. Other subsampling methods include choosing
samples by eye or randomly, but these methods may truncate the trait
space by omitting outliers or disproportionately drawing from the
dense center of a distribution. Omissions in sampling may hinder a
complete understanding of how response variables, for example,
reproduction, vary across the trait space of all possible crosses.
Furthermore, predicting response variables outside the range of

explanatory variables used in an experiment involves extreme value
methods, which can increase the error associated with predictions,
unless limiting assumptions are made (Pauli and Coles, 2001).
In breeding and mating studies, fully crossed matings between all

possible pairs are desirable to determine the combining ability and
genetic and maternal effects (Griffing, 1956; Zhu and Weir, 1996). But
a directed subsampling of all potential crosses to achieve some other
aim, for example, to maximize genetic diversity within the experiment,
may result in a set of target individuals that cannot be fully crossed.
A method is required to subsample and design matings to satisfy both
aims, for example, to maximize genetic diversity and to fully cross all
included individuals.
Algorithms for maximizing combinatorial diversity have been

extensively developed in the context of generating diverse molecular
libraries for drug screening (Martin and Critchlow, 1999). In these
algorithms, the metric of diversity is based on ‘redundancy’ and
‘coverage’ (Martin and Critchlow, 1999). Redundancy is the over-
lapping or clumping of points in space, while coverage is the spread of
points across the space. An ideal diversity metric would minimize
redundancy while maximizing coverage. The algorithms used in
chemical combinatorial analysis focus on maximizing the diversity
of a subset of molecules from a larger set by step-wise analysis of
differences between additional compounds added to a set (Holliday
et al., 1995). These algorithms cannot be directly applied to our
problem because they do not require selection of fully crossed sets.
However, we use their definitions of ideal set diversity to derive our
own measure of diversity that can be applied to fully crossed sets.
Calculating the mean of the nearest neighbor distances (NND) of

points representing a full factorial set of crosses plotted based on their
underlying parameters (for example, genetic, geographic or ecological
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distance) will give a measure of the evenness or ‘non-redundancy’ of
the points. The mean NND is often used to determine whether a
particular set of plotted points is randomly distributed or not (Clark
and Evans, 1954). A set of plotted points that are clumped will result
in a smaller value of the mean NND than a sample with the same
number of more evenly and broadly distributed points. The maximum
mean NND (MMNND) will occur when points are spread as evenly as
possible and the ‘coverage’ of space is maximal (Wang and Cumming,
2011). Thus, identifying a set of crosses with the MMNND from a
large random sample of many potential sets of crosses (‘crossing-sets’)
will return a crossing-set that is both broad and even with respect to
underlying trait values as compared with a randomly sampled
crossing-set.
We introduce a simple algorithmic sampling method for choosing

crossing-sets; we name the algorithm SPREAD (Selection of Pairings
Reaching Evenly Across the Data). SPREAD is based on selecting the
single crossing-set with the MMNND from among a large random
sample of potential crossing-sets plotted on two-dimensional trait
space. We use our algorithm to select a crossing-set from a genotyped
collection of geographically widespread wild strains of the filamentous
fungus, Neurospora crassa. Strains of this fungus have one of two
mating types, denoted mat-A or mat-a. The two parents in a cross
must have different mating types to mate. Recently, 24 strains of each
mating type were genotyped using RNAseq (Ellison et al., 2011). The
genotyped strains were collected from diverse locations, allowing us to
assign both genetic (the number of different single nucleotide
polymorphisms) and geographic (the distance between collection
sites) distance values to each of the 576 potential crosses. Using this
dataset as our example, we implemented the SPREAD algorithm and
tested its effectiveness when the true MMNND is not easily calculable.
Finally, we compare the ability of SPREAD selected and randomly
sampled crossing-sets to estimate known parameter values that relate
genetic and geographic distances to reproductive output for the entire
set of all potential crosses.

METHODS

General description of the SPREAD algorithm
DefineX and Y as the set of available strains or individuals of each mating type
or sex ('type') x and y, respectively, and sx× sy as the feasible number of crosses
that can be completed in an experiment. The variables sx and sy are the number
of strains selected for the experiment and are less than Xj j and Yj j,
respectively. Draw a large number, h, of random samples containing sx and

sy strains of each type from all possible sets of strains
X

sx

� �
and

Y

sy

� �
. For

each of the h samples, plot crosses based on values associated with the crosses
(for example, number of differing single nucleotide polymorphisms vs
geographic distance), and then calculate the mean of the NNDs of all plotted
crosses. Generate a list of h mean NNDs. Finally, use the maximum value from
the list because it corresponds to the set of sx× sy strains that most broadly and
evenly represents the parameter of interest. A formal mathematical description
of this algorithm is presented in the Supplementary Material (Supplementary
File 1).

A worked example using SPREAD
We used a previously published population genomics dataset consisting of
single nucleotide polymorphisms from transcriptomes of geographically diverse
wild isolates of the fungus N. crassa to test our method (Ellison et al., 2011). We
started with the set of all pairwise combinations of strains and then filtered to
include only mating type compatible pairs. We calculated the genetic distances
between compatible pairs by counting the number of different single nucleotide
polymorphisms (SNPs) between each pair and calculated geographic distances
using the great-circle distance between strain locales. The genetic and
geographic distance values for each pair were used to map all the crosses on

genetic and geographic distance axes. This is the ‘original distribution’ of
crosses.
We randomly sampled h= 1000 lists of sA= sa= 12 strains of each mating

type from the set of all
A

sa

� �
and

a
sa

� �
strains without replacement, whereA

and a are the sets of strains available for each mating type (analogous to X and
Y in the general description); in this case Aj j ¼ aj j ¼ 24. We computed all
possible pairwise mating combinations for each of the 1000 random samples of
sA= sa= 12 strain lists, resulting in 1000 crossing-sets each containing 144
crosses. We then plotted each crossing-set on geographic vs genetic distance
space and computed the mean NNDs using Euclidean distance calculations.
The crossing-set with the MMNND of all 1000 crossing-sets was selected. In
this worked example, selecting from a random sample of 1000 crossing-sets—
and not selecting from all possible crossing-sets—is necessary because the total

number of possible crossing-sets in this case is
24
12

� �2

¼ 7:31 ´ 1012.

Computing NNDs for all possible crossing-sets is computationally prohibitive
and, as shown below, unnecessary.
We implemented our algorithm and additional analyses in the R programming

language (R Core Team, 2014). R code for the implementation of the SPREAD
algorithm on crossing-sets with two traits and two sexes is available in the
Supplementary Information (Supplementary File 2) and online at http://dx.doi.
org/10.6084/m9.figshare.1180165. The following R packages were used in this
analysis: plyr (Wickham, 2011), reshape2 (Wickham, 2007), ggplot2 (Wickham,
2009), spatstat (Baddeley and Turner, 2005), foreach (Weston and Analytics,
2014) and glmmADMB (Fournier et al., 2012; Skaug et al., 2013).

Evaluating SPREAD’s approximation of the true MMNND
The true MMNND can only be determined if all possible crossing-sets for a
given sA and sa are evaluated. Therefore, calculating the true MMNND may not
be possible, even with high performance computing resources. For example, if
M= 300 and F= 300 and a crossing-set is desired with 20 individuals of
each type, then the total number of possible crossing-sets would be

300
20

� �2

¼ 5:6´ 1061. Using a random sample of all available crossing-sets

to estimate the MMNND is more practical, especially if the estimated MMNND
approximates the true MMNND.
We implemented the algorithm as described above for the N. crassa dataset,

except we varied crossing-set size by implementing SPREAD for sA= sa= 2, 3, 4,
…, 22. To simplify the process, we used crossing-sets where sA= sa, but this is
not a requirement of the SPREAD algorithm. We used five different h values (1,
10, 100, 1000 and 10000) to compare the effects of h size on the MMNND
values returned from SPREAD. We included an h value of 1 to simulate the
distribution of MNND values of crossing-sets generated by simple random
sampling (SRS). We repeated this process 1000 times to obtain bootstrapped
distributions of MMNND values for the different crossing-set sizes and h values.

Comparing model fits of SPREAD- and SRS-generated crossing-sets
Using SPREAD to design fully crossed mating experiments may be more effective
than selecting crossing-sets at random because broad and even sampling will
provide greater statistical power to understand how dependent variables vary
based on cross characteristics (for example, how reproductive success depends on
the genetic or geographic distances between parents). To evaluate this hypothesis
empirically, we created a simulated dataset of cross outcomes (that is,
reproduction) and modeled relationships between reproduction and the char-
acteristics of crosses in crossing-sets generated from SPREAD vs those generated
by simple random sampling. Simulated experimental data take the form of total
ascospore counts (the sexually produced spores of the fungus).
First, we generated simulated data for all possible crosses of the entire

crossing-set of 24 mat-A×24 mat-a strains, using a generalized linear model
fitted to unpublished empirical data from a diallel cross of 11 mat-a and 10
mat-A N. crassa strains. This model was evaluated using the glmmADMB
package (Fournier et al., 2012; Skaug et al., 2013) as Total Ascospore Count=
Genetic Distance+Geographic Distance+(Genetic Distance)2+(Geographic
Distance)2+Genetic Distance: Geographic Distance. The response variable of
Total Ascospore Count was modeled with a negative binomial distribution using
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a log link function. Genetic and geographic distance values were mean-centered
to prevent autocorrelation between linear and quadratic parameters. We did
not include all possible interaction terms because we wanted to restrict the
model to only linear and quadratic terms. Our choice is based on the biological
hypothesis that there is a single optimum of reproductive output, intermediate
between inbreeding and outbreeding depression (Lynch, 1991).
Second, we simulated four experimental replicates for each possible cross by

drawing from a negative binomial distribution with a mean derived from the
predicted experimental values and the negative binomial dispersion parameter
derived from the empirical data model (Supplementary File 3). The model
parameter values of the entire crossing population were determined by evaluating
the model described above with the complete simulated data set of all crosses.
The model parameter values from the entire population model will be referred to
as ‘population’ parameter values, while parameter values generated from sub-
sampled crossing-set models will be referred to as ‘sample’ parameter values.
Using the complete set of simulated experimental data, we computed data

sets for 1000 different crossing-sets generated with either SPREAD or SRS. The
algorithm parameter values for the SPREAD-generated crossing-sets were
sA= sa= 12 and h= 1000. We chose sA= sa= 12 to test the edge case of a
maximally complex sample space (the largest number of possible crossing-set
permutations occurs when sA= sa= 12). Crossing-sets chosen by SRS were of
the same size. Model fits were computed for each crossing-set using the model
described above. Parameter values and standard errors of the parameter values
were recorded for each of the 1000 SPREAD- or SRS-generated crossing-sets.
We compared the bias, precision and accuracy of sample parameter values

from model fits of crossing-sets generated with SPREAD or SRS. To compute
bias, we calculated the difference between the mean of sample parameter values
from the 1000 model fits and the population parameter values. To assess
precision, we computed the variance of sample parameter values from the 1000
model fits. To assess accuracy, we calculated mean squared error of sample

parameter values as 1
n

Pn
i¼1

ŷi � y
� �2

, where n= 1000, ŷi = the sample parameter

value of simulation i and θ= the population parameter value. We recorded the
MNND values of all SPREAD- and SRS-generated crossing-sets used in this
comparison to determine the relationship between MNND of crossing-sets and
the ability of those crossing-sets to estimate population parameter values.

RESULTS

The worked example
We used SPREAD on the N. crassa dataset described above to select a
crossing-set with 12 mat-A and 12 mat-a strains. A graphical

assessment of the chosen crossing-set plotted on geographic and
genetic distance axes shows that our method produces a crossing-set
that broadly and evenly represents all potential crosses (Figure 1).

Implementing SPREAD without knowing the true MMNND
Although the goal of SPREAD is to find a crossing-set with a high
MNND value, finding the true maximum MNND is not necessary for
most experimental purposes. Rather, the number of randomly selected
potential crossing-sets considered (h) should balance the desirability of
finding a set with a high MNND with computational convenience.
Plotting distributions of MMNND values for the five h values shows
that h values beyond 1000 deliver sharply diminishing marginal
returns for all crossing-sets with more than 16 crosses (Figure 2). As
the crossing-set size increases, MMNND values decrease because with
more crosses, the average distance between crosses decreases. Further-
more, the range of the MMNND estimates decreases as h increases,
mainly driven by an increase of the lower bound while the upper
bound remains relatively unchanged.

Comparing SPREAD to SRS
We tested the ability of SPREAD to generate crossing-sets that will
more accurately predict the parameter values one might find if all
potential matings of an available breeding population were used in an
experiment. Repeated simulations yielded distributions of parameter
estimates for each model parameter using each method (SPREAD or
SRS) (Figure 3). For both SPREAD and SRS, the peaks of these
distributions of estimates do not perfectly align with the underlying
population parameter values (Figure 3a). For three of the six model
parameters, the mean parameter value from SPREAD-generated
crossing-sets is less biased than the mean parameter value from
SRS-generated crossing-sets (Table 1). However, the distributions of
all six sample parameter values from SPREAD-generated crossing-sets
have smaller variances and mean squared errors than those from SRS-
generated crossing-sets (Table 1). The standard errors of parameter
values from SPREAD-based models are small compared with those
from SRS-based models (Figure 3b and Table 2), increasing the
probability of closely approximating the population parameter values.
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Figure 1 Example implementation of SPREAD. Panel (a) shows all possible crosses between 24 mat-A and 24 mat-a N. crassa strains plotted based on
genetic and geographic distance between the parents in a cross; panel (b) shows the set of 12 mat-A×12 mat-a N. crassa strains returned from an example
run of the SPREAD algorithm (with h=1000). The SPREAD selected set can vary between runs of the algorithm. Crosses are plotted as semitransparent dots
and darker colors mark overlapping crosses.
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MNND vs parameter estimates
Broadly and evenly distributed explanatory variables increase the
accuracy and precision of predictions based on those variables. The
MNND is a measure of the broadness and evenness of points in
space, and so it should be negatively correlated with measures of
inaccuracy or error. Indeed, we found strong negative relationships

between the MNND of crossing-sets and both the deviation from
population parameter values (Figure 4a) and the standard errors of
sample parameters (Figure 4b). Within SRS-generated crossing-
sets, those sets with higher MNND values also recapitulated the
population parameter values better than crossing-sets with lower
MNND values.
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DISCUSSION

SPREAD is an easily implemented algorithm designed to
identify maximally informative, full factorial crossing-sets for use in
mating experiments. SPREAD increases the diversity inherent in a

crossing-set, for example, the genetic and geographic distances among
crosses compared with a randomly sampled crossing-set. SPREAD
requires two input parameters chosen by the user: the dimensions,
sx× sy, of the desired crossing-set and the number of randomly
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Figure 3 Comparisons of sample parameter values and standard errors for 1000 crossing-sets generated either with SPREAD or SRS. The SPREAD
specifications used are sA= sa= 12 and h=1000. (a) Violin plots showing the distribution of sample parameter values for each parameter in the model.
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Table 1 Comparison of bias, variance and mean squared error of sample parameter values from model fits of crossing-sets generated with

SPREAD or SRS

Model parameter Bias Variance Mean squared error

SPREAD SRS SPREAD SRS SPREAD SRS

Intercept 2.891E-02 6.454E-03 4.110E-03 6.889E-03 4.942E-03 6.924E-03

Genetic dist. 3.374E-02 −2.646E-02 3.356E-03 7.176E-03 4.491E-03 7.869E-03

Geographic dist. −1.140E-02 −1.270E-02 4.833E-03 8.842E-03 4.958E-03 8.995E-03

(Genetic dist.)2 −1.561E-02 −3.385E-02 2.022E-03 4.558E-03 2.263E-03 5.700E-03

(Geographic dist.)2 −1.170E-02 −1.770E-02 3.758E-04 1.973E-02 5.122E-04 2.003E-02

Geographic:Genetic dist. 7.791E-03 3.189E-02 4.226E-03 1.740E-02 4.283E-03 1.840E-02

Abbreviations: Dist., distance; SPREAD, selection of pairings reaching evenly across the data; SRS, simple random sampling.
Lesser values (SPREAD vs SRS) are shown in bold.
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generated crossing-sets, h, from which the crossing-set with the
MMNND is selected. The code for SPREAD was designed for two
dimensional trait data. If potential crosses are characterized by more
than two target traits, and the traits are not completely independent,
principal components analysis can be used before implementing
SPREAD as is to determine which two traits explain most of the trait
variance (King and Jackson, 1999). Alternatively, the SPREAD code
could be modified to calculate NNDs in multi-dimensional space.
In our worked example, we successfully used SPREAD to select a

crossing-set of 12 mat-A× 12 mat-a N. crassa strains. When these
crosses are plotted in genetic vs geographic distance space, it is evident
that the selected set fulfills the desired criteria of evenly and completely
covering the range of the larger set (Figure 1). Using the MMNND as
the diversity metric favors crosses that are at the extremes of the trait-
space. The inclusion of crosses with extreme trait distances in an

Table 2 Summary statistics for the distribution of standard errors

from 1000 model fits using either SPREAD- or SRS-generated

crossing-sets

Model parameter Mean of std. errors Variance of std. errors

SPREAD SRS SPREAD SRS

Intercept 0.0768 0.0944 1.60E-05 1.72E-04

Genetic distance 0.0735 0.0904 3.59E-05 1.94E-04

Geographic distance 0.0919 0.1093 1.66E-05 1.60E-03

(Genetic distance)2 0.0547 0.0709 1.48E-05 1.85E-04

(Geographic distance)2 0.0280 0.1079 1.79E-06 1.19E-02

Genetic Dist.:Geographic Dist. 0.0867 0.1466 2.16E-05 2.87E-03

Abbreviations: Dist., distance; SPREAD, selection of pairings reaching evenly across
the data; SRS, simple random sampling. Lesser values (SPREAD vs SRS) are shown in bold.
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Figure 4 Relationship between measures of lack of model fit and the MNND of those crossing-sets for both SRS (light gray dots and dashed lines)
and SPREAD-generated (dark gray dots and solid lines) crossing-sets. Trend lines were calculated using a generalized linear model with a Gaussian
response distribution and a log link function. Significance of the line slope is shown below each line: ***P ⩽0.0001, **P ⩽ 0.001, *P ⩽ 0.01,
NS P40.05. (a) The absolute value of the difference between population parameter values and sample parameter values of SRS- and SPREAD-
generated crossing-sets for all six model parameters. (b) The standard errors of SRS- and SPREAD-generated crossing-sets for all six model
parameters.
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original population should be carefully considered because these
crosses will often be selected by SPREAD.
Calculating the true MMNND by computing MNND values for

every possible subset of a sampled population may not be possible.
Instead, our algorithm generates a large number (h) of random
crossing-sets and chooses the set with the MMNND from those
h crossing-sets. Choosing an appropriate h value is an important
consideration when implementing the algorithm because too small
an h value may reduce the probability of selecting a crossing-set with
an MNND value close to the maximum value, whereas too large an
h value would unnecessarily increase computation time.
Our results show that the range of the distribution of MMNND

values decreases as h value increases, mainly driven by an increase in
the minimum MMNND value. Increasing the h value used in the
algorithm increases the probability of obtaining an MMNND value
close to the true MMNND value. However, the probability that an
additional sample will yield a value higher than all samples already
considered decreases as the number of samples already considered
goes up. In terms of the number of random samples already sampled
(h), this probability can be calculated as 1� ðh�1

hþ1Þ, for example, in our
test, we used h values of 10, 100, 1000 and 10000. The probability of
choosing an additional sample with a MNND value outside the range
of the samples already taken would be 0.19, 0.0199, 0.001998 and
0.00019998, respectively. Increasing the h value above 1000 will result
in a greater MMNND only 0.2% of the time. On the basis of this
reasoning and our analyses of different h values, using an h value of
1000 should be sufficient for most experiments with modest
population sizes.
In experiments with a large breeding stock and small desired

experimental mating population, there may be large variation in
MNND values among crossing-sets. Such large variation may offset
the ability of even large h values to return a crossing-set that is
substantially different from a randomly sampled crossing-set. In these
cases, SPREAD could be modified to include a simulated annealing
function that searches the space of a very large number of potential
crossing-sets for a crossing-set that converges on a peak MNND value.
One example of a simulated annealing algorithm that could be
adapted for this purpose is SAGE (Simulated Annealing Guided
Evaluation), developed to design combinatorial drug libraries (Zheng
et al., 1999).
We hypothesized that maximizing the diversity inherent in a

crossing-set would increase the predictive ability of models relating
outcomes to characteristics of crosses. When we compared model fits
from crossing-sets generated by SPREAD with model fits from
crossing-sets generated by SRS, we found that the model parameter
values from SPREAD-generated crossing-sets were more precise
(smaller variance) and accurate (smaller mean squared error) estima-
tors of the population parameter values (Table 1 and Figure 3).
There was no clear distinction between the bias of parameter values

from SPREAD- or SRS-generated crossing-sets. Both methods resulted
in sample parameter values that were not equal to the true parameter
values, and both methods produced the same number of more or less
biased parameter values (Table 1). Because both methods are equally
biased, the source of the bias is probably systemic. The population
parameter values are from a model calculated using the entire set of 24
mat-A× 24 mat-a crosses while the sample parameter values are from
crossing-sets of 12 mat-A× 12 mat-a strains. The smaller sample size
used to fit the model decreases the ability of sample parameter values
to estimate population parameter values. Generalized linear models
have been shown to be especially sensitive to sample size, compared
with other methods (Wisz et al., 2008).

The true MMNND does not need to be determined to produce
crossing-sets that provide accurate estimates of underlying population
level parameter values. For most parameters, SPREAD-generated
crossing-sets with large MNND values fall at the bottom of the curve
describing the relationship between the MNND of SRS-generated
crossing-sets and either their deviation from population parameter
values (Figure 4a), or the standard error of sample parameters
(Figure 4b). Within the SPREAD-generated crossing-sets (dark gray,
Figure 4), the benefit of a slightly higher MNND value to measures of
model fit is negligible and, therefore, so is the benefit of increasing the
h value used in SPREAD. Furthermore, the negative trend between the
MNND of crossing-sets and our two measures of lack of model fit
provides strong statistical support for our claim that maximizing the
MNND of crossing-sets increases the utility of data generated from
those crossing-sets.
Although our analysis used a dataset generated from the fungus

Neurospora crassa, SPREAD can be easily used for many other
organisms. SPREAD can be used to design breeding experiments for
any fungus, plant, animal or other sexual eukaryote with two mating
types or sexes where ecological, genetic or physiological trait differ-
ences between the individuals involved in a cross are measured. The
algorithm can be used directly, and does not require any modification
when used with other organisms that satisfy these criteria.
For a species with more than two mating types, for example, the

social amoebae Dictyostelium discoideum that has three mating types
(I, II and III) (Bloomfield et al., 2010), SPREAD would have to be run
for each possible combinations of compatible mating types. The
desired crossing-set size would have a maximum size dependent on
the mating type with the fewest strains. For D. discoideum, SPREAD
would have to be run six times for the following combinations:
I × (II,III); II × (I,III); III × (I,II); I × II; I × III; II × III. The crossing-set
with the greatest MNND value from the six SPREAD selected
crossing-sets would then be used for experimentation. The number
of SPREAD runs required will scale rapidly with the number of mating
types involved, requiring parallel computation of SPREAD for species
with large numbers of mating types.
SPREAD increases the value of fully crossed mating designs by

enabling exploration and prediction across the full space of cross
characteristics provided by available breeding stock. Simulations based
on crossing-sets generated from the SPREAD algorithm vs SRS prove
our algorithm generates more precise and accurate parameter esti-
mates, enabling better predictions of relationships between cross
characteristics (for example, the genetic and geographic distances
between parents) and the success of a cross. SPREAD is not
computationally intense and is easy to implement, making it a
valuable tool for researchers designing crossing experiments.
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