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Commentary
The shape of fungal ecology: does spore
morphology give clues to a species’ niche?
Pick up any botany textbook, and you can read about the

morphologies of flowers: “most bird flowers are colorful, with

red and yellow ones being themost common. bat flowers are

typically dully colored, and many of them open only at night”

(Raven et al., 1992 pp. 424e425). The color, smell, and shape of

a flower (as well as quality of nectar and phenology) are used

to predict the kind of pollinator associated with a species. For

example, red flowers that do not smell but produce high

quality nectar are associated with hummingbirds, which is

why hummingbird feeders are often brightly colored and filled

with strong sugar water. Morphology can be manipulated to

attract specific pollinators, and pollination syndromes are

commonly discussed in the literature (Rosas-Guerrero et al.,

2014). Seeds are also a clue to ecology, for example, plants

making copious numbers of very small, light, seeds, are likely

to use wind as a dispersal vector; seeds with elaiosomes are

likely to be dispersed by ants (Raven et al., 1992).

What about a spore that is ornamented? Can a mycologist

know anything about ecology from looking at the shape (Roper

et al., 2008) or size of a spore, or the size or phenology of a

sporocarp? Obviously, morphology is a clue to taxonomy;

ascospores look different from basidiospores. A spore of a

Cordyceps looks like nothing else.

But perhaps morphology can offer more. The effective

dispersal of spores plays an essential role in the ability of fungi

to reach and colonize new substrata. Many spore features are

likely to be under adaptive selective pressures related to the

particular ecological niche of a species. In fact, the morpho-

logical diversity of spores and the sporocarps holding them is

astonishing (Pringle, 2013), and begs for explanation. In some

cases, morphological diversity is easily explained, for exam-

ple, the characteristic forms of hypogeous truffles are the

result of natural selection for animal dispersal, and so hypo-

geous basidiomycete truffles lack functional sterigmata.

Understanding these morphologies provides clues in less

obvious cases, as when a newly discovered epigeous species

also lacks sterigmata capable of ballistospore discharge; ani-

mal dispersal becomes an obvious hypothesis (Desjardin et al.,

2011). But for the majority of spore and sporocarp morpholo-

gies, adaptive significance is unknown. Moreover, we do not

know how spore features may or may not relate to a plethora

of other ecological strategies e including, for example, does
the spore of a saprotrophic Amanita look somehow con-

sistently different from the spore of a mycorrhizal Amanita?

While many modern fungal ecologists may eschew the

study of spores and sporocarps as throwbacks to a pre-

molecular era, Peay (2014), Halbwachs et al. (2015) and

B€assler et al. (2014) ask whether there are predictable differ-

ences between the spores and sporocarps of saprotrophic and

ectomycorrhizal fungi. Among other results, B€assler et al.

(2014) found that saprotrophic fungi produce smaller spor-

ocarps than ectomycorrhizal species, and Halbwachs et al.

(2015) found that spores of ectomycorrhizal species are more

likely to be ornamented. There are a number of challenges to

these kinds of analyses e including, trophic status and spore

morphology are influenced by phylogeny, and estimating

independent changes in either character requires phyloge-

netically explicit statistical models. Meerts (1999) used phy-

logenetically independent contrasts to demonstrate lineage

specific differences in correlations of spore and sporocarp

sizes. In some cases correlations were positive (for example,

in Agaricus and Coprinus) while in other cases, correlations

were negative (Psathyrella). While Halbwachs et al. (2015) and

B€assler et al. (2014) attempt to control for phylogenetic inter-

dependence, there are reasons to query their assumptions and

methods. For example, the species included in analyses do not

form a monophyletic group, although they are treated as a

single group, and ancestral state analyses of nutritional mode

and spore surface characters are not provided. In addition, the

species are taken from a single geographic region (Northern

Europe), andmay be dominated by particular subsets of fungal

diversity, including ectomycorrhizal Cortinarius species with

ornamented spores. Nonetheless, both articles ask questions

worth thinking about, and provide a valuable path forward.

If these findings hold, what can they teach us about the

selective pressures experienced by fungi in different niches?

What is the relationship between spore morphology (specifi-

cally, ornamentation), dispersal, and symbiosis, and why does

sporocarp size give a clue to nutritional mode? The ectomy-

corrhizal symbiosis has evolved at least 66 times (Tedersoo

et al., 2010; Tedersoo and Smith, 2013), likely from decom-

poser ancestors in each case. Understanding these transitions

is a major focus of mycology (Hibbett et al., 2000; Bruns and

Shefferson, 2004; Wolfe et al., 2012; Kohler et al., 2015). To
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date research has emphasized the genetics underpinning the

evolution to symbiosis, and the evolved interaction at the

interface of a fungus and plant (Plett and Martin, 2011; Martin

and Kohler, 2014; Liao et al., 2014). But the emergence of an

ectomycorrhizal symbiosis may well involve correlated

changes in spore or sporocarp morphology, for example, per-

haps a transition to ornamented spores (Halbwachs et al.,

2015).

However, to our knowledge there is no research on the

origins of ornamentation, nor do we know if a reversal from

ornamented to smooth spores has happened in evolutionary

history. The critical question is whether or not there is a

fundamental difference in the habitats of saprotrophic and

ectomycorrhizal fungi, so that each group requires a funda-

mentally different dispersal syndrome. Halbwachs et al. (2015)

suggest that the predominance of ornamented spores

amongst ectomycorrhizal fungi is related to the fact that their

primary resource (plant roots) is buried within the soil matrix,

rather than exposed as are most resources of saprotrophic

fungi. Ornamentation, they hypothesize, may facilitate zoo-

chory by soil invertebrates that would carry the spores closer

to their destination. Lilleskov and Bruns (2005) showed that

the knobby spores of the ectomycorrhizal fungus Tomentella

sublilacina were effectively dispersed on the body of mites, so

this is a plausible contention. But it is a single example, and

we do not know the answers to questions including, is T.

sublilacina representative of all ectomycorrhizal species, and

do unornamented spores NOT cling to invertebrates? Do these

mites really carry the spores from the surface to deeper layers

of soil? However, Halbwachs et al.’s ideas can be tested with

experiments, for example to see whether smooth spores are

less effectively dispersed through soil by animals, and

whether animal dispersal does indeed help move ectomy-

corrhizal spores deeper into the soil column or closer to host

roots.

The hypothesis linking ectomycorrhizal spore orna-

mentation to animal dispersal is just one of many plausible

conjectures, and for example, the authors might as easily
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have thought about water. We do know that water can move

spores: one particularly elegant experiment involved Lyco-

perdon perlatum, Fuligo septica, and yeast. Spores of all species

were moved from water in a Petri dish up an inclined glass

plane to heights of more than 20 cm (Bandoni and Koske,

1974); spores moved up the plane in response to a slow

trickle of water (analogous to rain) that reached and perturbed

the airewater interface in the dish. There is also no doubt that

water moves species differently, for example, when water is

poured over soil Penicillium spores do not move well while

spores of Zygorhynchus vuillemini (now Mucor moelleri) move

easily (Burges, 1950). But as with insects, we have a limited

understanding of how effective water is as a vector through

soil, nor do we really understand potential interactions

between water and ornamentation.

Perhaps ornamentation facilitates movement by animals,

but inhibits dispersal by water, and perhaps ECM of shallow

soils benefit from large, ornamented spores, while ECM

associated with deep roots benefit from possession of small,

smooth spores. This kind ofmechanismwould help explain or

reinforce the strong patterns of vertical zonation seen in

many soil fungal communities (Dickie et al., 2002; Taylor et al.,

2014). Perhaps in some cases the depth of a species’ habitat is

more of an influence on morphology than trophic status.

In some cases, literature outside of mycology proves use-

ful. For example, the dispersal of bacteria through soil has also

been an active area of research. Cell size clearly plays a role in

bacterial dispersal by water; smaller bacteria move more

easily with water (Gannon et al., 1991) but soil properties,

specifically the size of the spaces or pores within soil, also

influence migration (Huysman and Verstraete, 1993). Hydro-

phobic bacteria move two to three times more slowly than

hydrophilic strains, because hydrophobic strains stick to soil

particles (Huysman and Verstraete, 1993). Perhaps hydrophilic

fungal spores will also move more easily than hydrophobic

fungal spores and, because fungal spores are often coated

with numerous hydrophobic proteins, termed hydrophobins

(Whiteford and Spanu, 2002), the potential for species to
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evolve differences in hydrophobicity is enormous. However,

at least one study suggests something quite different: hydro-

phobins are required for efficient water mediated dispersal of

Cladosporium fulvum (Whiteford and Spanu, 2001).

Complex questions and arguments also surround the link

between sporocarp size and nutritional mode (B€assler et al.,

2014). Large sporocarps convey obvious ecological advan-

tages. Larger caps provide more surface area for spore pro-

duction, and taller mushrooms enable a higher release point

for spores, making it more likely that spores will travel long

distances (Galante et al., 2011, Fig 1). But these advantages

come at a cost, as increasing cap size requires non-linear

increases in total biomass (Fig 1). Perhaps ectomycorrhizal

fungi can afford larger sporocarps because they access a

more predictable source of carbon (B€assler et al., 2014),

thereby generating the correlation between niche and spor-

ocarp size. Or perhaps saprotrophic fungi require smaller

sporocarps because species often occupy ephemeral patches

of habitat, needing to move among habitats annually, and so

fruit even when resources are scarce or the environment is

suboptimal. Smaller sporocarps may enable consistent

reproduction, year after year. Or perhaps there are other

explanations. How fungi store and mobilize the carbon and

nitrogen needed to produce sporocarps remains an open

question (Taylor and Alexander, 2005), and one novel tool to

explore the question would involve tracing the carbon and

nitrogen sources for saprotrophic fungi that form large

sporocarps, for example Agaricus, Macrocybe, Leucopaxillus,

and Macrolepiota.

While scientists have thought about the shapes of flowers

and seeds for hundreds of years, relatively less thought has

been directed at sporocarp or spore morphology, except in

contexts of taxonomy. Notable exceptions include early work

by A. H. R. Buller, E. Parmasto, C.T. Ingold, and H. Cl�emençon,

and more recent research describing relationships between

ecological strategies, and sporocarp and spore size, among

polypores and autumnal basidiomycetes (Kauserud et al.,

2008, 2011). The papers by Halbwachs et al. (2015) and

B€assler et al. (2014) highlight our fundamental ignorance

about basic aspects of natural history, ideally, they will inspire

a new wave of critically needed studies.
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