DIVERGENT PHENOLOGIES MAY FACILITATE THE COEXISTENCE OF ARBUSCULAR MYCORRHIZAL FUNGI IN A NORTH CAROLINA GRASSLAND

ANNE PRINGLE2,4 AND JAMES D. BEVER3

2Department of Biology, Duke University, Durham, North Carolina 27708 USA; and 3Department of Biology, Indiana University, Bloomington, Indiana 47405 USA

Interest in the diversity of arbuscular mycorrhizal (AM) fungal communities has been stimulated by recent data that demonstrate that fungal communities influence the competitive hierarchies, productivity, diversity, and successional patterns of plant communities. Although natural communities of AM fungi are diverse, we have a poor understanding of the mechanisms that promote and maintain that diversity. Plants may coexist by inhabiting disparate temporal niches; plants of many grasslands are either warm or cool season specialists. We hypothesized that AM fungi might be similarly seasonal. To test our hypothesis, we tracked the sporulation of individual AM fungal species growing within a North Carolina grassland. Data were collected in 1996 and 1997; in 1997, sampling focused on two common species. We found that AM fungi, especially Acaulospora colossica and Gigaspora gigantea, maintained different and contrasting seasonalities. Acaulospora colossica sporulated more frequently in the warm season, but Gl. gigantea sporulated more frequently in the cool season. Moreover, AM fungal species were spatially aggregated at a fine scale. Contrasting seasonal and spatial niches may facilitate the maintenance of a diverse community of AM fungi. Furthermore, these data may illuminate our understanding of the AM fungal influence on plant communities: various fungal species may preferentially associate with different plant species and thereby promote diversity in the plant community.

Key words: coexistence; mutualism; mycorrhizae; niche partitioning; seasonal patterns; spatial patterns; sporulation; VAM (vesicular-arbuscular mycorrhizal) fungi.

Approximately 95% of the world’s plant species belong to families that are characteristically mycorrhizal (Smith and Read, 1997); interest in the diversity of fungal communities is increasing because of a growing understanding of the impact of fungal diversity on plant communities. Arbuscular mycorrhizal (AM) fungi inhabit the roots of plants and provide phosphorous, and perhaps other benefits, to plants in exchange for photosynthetically derived carbon compounds. AM fungi are entirely dependent on plant hosts; fungi cannot be cultured axenically. Plant populations and communities are strongly influenced by AM fungi: fungi may increase or decrease plant fitness (Koide, Shumway, and Mabon, 1994; Francis and Read, 1995), regulate inter- or intraspecific competition (Fitter, 1977; Hartnett et al., 1993; Moora and Zobel, 1996), and direct successional patterns (Gange, Brown, and Farmer, 1990; Allen, 1991). A number of studies have demonstrated that species of fungi cannot be substituted for each other within an experiment or habitat (Johnson et al., 1991; Streitwolf-Engel et al., 1997; van der Heijden et al., 1998a); for example, Glomus macrocarpum causes tobacco stunt disease (Modjo and Hendrix, 1986), while Glomus fasciculatum has no effect on tobacco growth (Modjo and Hendrix, 1986) and Gigaspora margarita enhances tobacco growth (Csinos, 1981). Because species of fungi are ecologically distinct, the diversity of an AM fungal community can have large effects on plant population and community dynamics (van der Heijden et al., 1998b), and for this reason, factors that influence the diversity of fungal communities are of interest to plant ecologists. Although AM fungal communities of natural habitats are diverse (e.g., Morton, Bentivenga, and Bever, 1995; Bever et al., 1996; Stutz and Morton, 1996), the specific mechanisms by which coexistence of diverse groups of fungi is facilitated are unknown.

Coexistence might be explained by the partitioning of various biotic or abiotic resources. Although associations between plants and AM fungi appear to be nonspecific, a number of recent studies have demonstrated that the population growth rates of fungal species are dramatically affected by the species of plant with which they are associated (Johnson, Tilman, and Wedin, 1992; Sanders and Fitter, 1992a; Bever et al., 1996; Eom, Hartnett, and Wilson, 2000); this host-specificity in AM fungal response might promote the coexistence of AM fungi. For example, the AM fungal species Acaulospora colossica (called A. D1 in Bever et al., 1996) sporulates profusely with the plant Allium vineale but not with Plantago lanceolata; in contrast, Scutellospora calospora sporulates well with P. lanceolata but poorly with A. vineale (Bever et al., 1996). Although both Ac. colossica and S. calospora are capable of infecting both A. vineale and P. lanceolata, the benefits to the fungi are variable; variable benefits might promote the coexistence of AM fungi within a diverse plant community. Coexistence might also be facilitated by the interaction of AM fungi with pathogens. Arbuscular mycorrhizal fungi are commonly infected by other fungi (Daniels and Menge, 1980; Lee and Koske, 1994a; Rousseau et al., 1996) or actinomycetes (Lee and Koske, 1994a) and variability in infection susceptibility might promote coexistence. In addition environmental parameters, for example, soil phosphorus levels (Miranda and Harris, 1994a, b) or pH (Clark, 1997), may provide different benefits to plants.
species of AM fungi with unique niches (see also Johnson, Tilman, and Wedin, 1992; Klironomos et al., 1993; Schultz, 1996).

The coexistence of AM fungal species might also result from fungal partitioning of temporal resources; for example, a fungus that grows in spring will not compete with a fungus that grows in fall. Temporal niche partitioning requires that fungi have distinct seasonalties. The coexistence of plant species is often facilitated by plants’ heterogeneous seasonalties; for example, Fowler and Antonovics (1981) documented two seasonal plant guilds within a North Carolina grassland. Species such as Allium vineale and Veronica arvensis dominate in the cool season, but species such as Cynodon dactylon and Paspalum spp. dominate in the warm season. AM fungi may demonstrate an analogous seasonality, and disparate seasonal phenologies may contribute to the maintenance of a diverse community of AM fungi.

Moreover, the coexistence of AM fungal species may be facilitated by the fine-scale spatial structure of fungal communities. As the aggregation of species distributions increases, AM fungi are increasingly likely to compete against individuals of the same species, thereby intensifying intraspecific competition relative to interspecific competition. This dynamic may facilitate the coexistence of competing fungal species (Pa- cala, 1986). In fact, previous studies indicate that AM fungal communities are spatially clumped (Friese and Koske, 1991; Bever et al., 1996).

We investigated the seasonality of AM fungi within the same North Carolina grassland explored by Fowler and Antonovics (1981). The site supports a particularly diverse group of fungi; to date, 37 species have been recorded from approximately 1.5 ha (Bever et al., 1996; Schultz, 1996; J. D. Bever and P. Schultz, Indiana University, unpublished data). Host-specificity in fungal population growth rates may contribute to the maintenance of fungal diversity (Bever et al., 1996); in addition, the high diversity of AM fungi might result from a temporal partitioning of the habitat. In fact, prior sampling suggests that fungi differ in their seasonalties: Schultz, Bever, and Morton (1999) observed that Acaulospora colossica sporulates in spring, but other species, particularly Gigaspora gigantea, are observed to sporulate in winter (Schultz, 1996). In this study, we aimed to rigorously test for the distinct seasonalties of Acaulospora colossica, Gigaspora gigantea, and other species of AM fungi within the North Carolina grassland. We focused on temporal patterns; however, the same data were used to compare the fine-scale spatial arrangements of collected AM fungi.

MATERIALS AND METHODS

The study site—The habitat is a well-studied (Fowler, 1978; Clay, 1982; Kelley, 1985; Moloney, 1986; Bever, 1992; Schultz, 1996) old field on the campus of Duke University, Durham, North Carolina, USA. Regular mowing over the last 50 yr has killed succession and kept the field as a species-rich grassland. Although certain plant species appear to dominate at specific times of year (e.g., Anthoxanthum odoratum in spring), careful observation reveals a mosaic of common plants that belong to a diversity of families (Fowler and Antonovics, 1981). Soil is a sandy loam of the White Store series (Fowler and Antonovics, 1981). Plants are divided into cool and warm season communities; cool season plants are active in fall, winter, and spring, and warm season plants are active in the spring, summer, and fall (Fowler and Antonovics, 1981). The AM fungal community within the field is diverse: a variety of intensive collecting and trapping techniques have revealed 37 morphospecies (Bever et al., 1996; Schultz, 1996; J. D. Bever and P. Schultz, Indiana University, unpublished data), and these fungi are known to be ecologically distinct (Bever et al., 1996; Schultz, 1996; Pringle, 2001).

Experimental approach and design—Arbuscular mycorrhizal fungi were sampled from an area of the field with a particularly rich fungal community; the site is known to maintain abundant populations of both Acaulospora colossica and Gigaspora gigantea (Schultz, 1996). Our goal was to evaluate the seasonality of these, and other, fungal species by enumerating spore densities through time.

Numbers of healthy spores are likely to reflect the past physiological activity of an AM fungus. Sporulation can be correlated to the prior growth of a fungus within plant roots (Douds and Schenk, 1990; Gazey, Abbott, and Robson, 1992; see also Abbott and Gazey, 1994), and in agricultural systems, sporulation is associated with plant senescence (see references in Gemma, Koske, and Carreiro, 1989). This evidence suggests that spores form during the final stages of an association between plant and fungus. While this pattern may vary between fungal species, spore counts of Ac. colossica and Gi. gigantea are likely to reliably track periods of prior physiological activity. Acaulospora colossica is closely related to Ac. laevis (Schultz, Bever, and Morton, 1999), and Ac. laevis has been shown to sporulate following periods of physiological activity (Gazey, Abbott, and Robson, 1992). Moreover, Abbott and Robson (1981) found that mycorrhizae of Ac. laevis were ineffective at colonizing new hosts following sporulation. Healthy spores are ephemeral in nature: spores are parasitized or germinated within months of creation. Lee and Koske (1994b) have estimated that spores of Gi. gigantea are viable for approximately 5 mo in the field. Therefore, fluctuations in numbers of healthy spores should reflect prior periods of physiological activity, and greatest spore densities should follow peak periods of physiological activity.

Samples were collected from an approximately 36-m² site, which represents a relatively small portion of the 1.5-ha field. By minimizing the size of the site, we intended to minimize spatial variability. Plots within the site were arranged in three rows of three plots each (Fig. 1). The nine plots were sampled every other month during the first year. To evaluate the consistencies of Acaulospora colossica and Gi. gigantea seasonalties, a subset of the nine sites was monitored in greater detail during the second year.

Sampling in year 1 (1996)—Spores were collected from nine plots within the site on the first day of February, April, June, August, October, and December. Each month, a 24 x 24 cm grid was placed at each plot. The grid was subdivided into 36 x 4 x 4 cm squares (Fig. 1). Three 2 cm diameter soil cores were taken to a depth of 7 cm from three randomly chosen squares at...
each of the nine sites. Soil cores were pooled and stored in sealed plastic bags at 4°C until they could be processed, normally within a month of collection. Immediately prior to spore extraction, soil from a single point was chopped and chemically homogenized. Spores were extracted from a 30-cm² subsample of homogenized soil using a modified sucrose-centrifugation technique (Bever et al., 1996). Spores were identified to species based on spore wall characters using reference cultures from this site (Bever et al., 1996) and from INVAM (International Culture Collection of Arbuscular and Vesicular-Arbuscular Mycorrhizal Fungi; Morton, Bentivenga, and Wheeler, 1993). Essential features were noted for morphotypes that appeared to be distinct from any published species descriptions. Permanent slide vouchers of all species are available upon request from the authors.

Total numbers of healthy spores were recorded for each species. One species creates two kinds of spores, and the different morphologies were tracked individually and are called Archaeospora leptoitcha and Glomus leptotichum (after Morton and Redecker, 2001). A dissecting scope was used to count every spore of the subsample for most species; however, estimates were used to approximate the total number of the small and usually numerous spores of Acaulospora morrowiae (referred to as Ac. mellea in Bever et al., 1996). We estimated the total number of Ac. morrowiae in a subsample by counting the number of spores in 40 randomly located optical squares (2.5 × 2.5 mm). Spores were judged to be healthy if they were completely filled with lipid droplets and devoid of parasitism.

Spores of Gi. gigantea were further categorized as either “new” or “old” on the basis of color (Lee and Koske, 1994b); “old” spores are likely to be several months old. “New” spores of Gi. gigantea are bright yellow-green, but “old” spores are dull yellow or yellow-brown. Note that only spores with lipid contents were counted, i.e., dead spores were not counted. Differentiating “new” from “old” Gi. gigantea spores allowed us to more accurately judge the timing of sporulation for this species.

Sampling in year 2 (1997)—Results of sampling in year 1 confirmed that spores of Gi. gigantea and Ac. colossica were abundant at the study site, were distinctly seasonal, and had contrasting seasonalities. In year 2, sampling focused on Gi. gigantea and Ac. colossica. However, because of a large and consistent effect of plot identity on spore densities, in the second year sampling was adjusted to more formally evaluate the interaction between spatial and seasonal patterns. Cores were not homogenized; instead, spores were extracted and counted from 25 cm² of soil of each core. By evaluating individual cores, we were able to test for the constancy of seasonal patterns within plots. In 1997, only plots A1, A3, B2, C1, and C3 were sampled (Fig. 1). Two 2 cm diameter soil cores were taken to a depth of 7 cm from two randomly chosen squares at each plot. Otherwise, methods were as described above.

Analyses—Only those species that were relatively common (found at every date and in most plots) were included in statistical analyses of spore densities (Table 1). To improve the normality of distributions and homogeneity of variances, spore counts of each species were ranked; further analyses were completed with ranked counts (as in Bever et al., 1996). Multivariate analysis of variance (MANOVA) was used to test for general seasonal and spatial effects (completed with the general linear models procedure; SAS Institute, 1988). Subsequently, a multivariate profile analysis was used to test the variability of fungal species' seasonal and spatial patterns (as developed in Bever et al., 1996). The profile analysis specifically asks whether fungal species display different seasonalities and for this reason, the analysis directly tests the essential question of our study. Finally, significant multivariate effects were further dissected using univariate analyses of variance (ANOVA) on ranked counts of the individual species.

The 1996 data for sites A1, A3, B2, C1, and C3 were combined with the 1997 data to evaluate the similarity of seasonal differences between Ac. colossica and Gi. gigantea across years. To test whether the seasonalities of the two species contrasted across both years, we used a multivariate profile analysis with the profile × date × year interaction as the error term. The analogous test was used to contrast the spatial patterns in both years. Subsequent to each multivariate analysis, ANOVAs were used to evaluate individual patterns of the two species. ANOVAs allowed us to treat year as a random effect, and therefore, we were able to test the generality of seasonal patterns across both years.

In the analyses described above, counts of new and old Gi. gigantea spores were added to give a single value for the total number of spores at each date in each plot. To confirm the seasonal patterns of Gi. gigantea that we had inferred from the total spore counts, we tested for seasonal differences in the densities of new and old spores. We predicted that the proportion of new spores would be highest after the fungi sporulate (while spore numbers are increasing) and lowest when fungi do not sporulate (and new spores develop into old spores). We tested our hypothesis by analyzing the effects of date and plot on the proportion of new spores (number of new spores divided by the total number of spores) with MANOVA, as described above, using data from 1996. A subsequent analysis evaluated the similarity of seasonal patterns in 1996 and 1997 using ANOVA, as described above.

Results

Numbers of AM fungal species (1996)—Spores of 17 species were collected from our site within the old field (Table 1). Three of the species are undescribed (Table 1). The majority had been previously observed within the site by Bever et al. (1996) and Schulz (1996). Only seven of the species occurred frequently enough to include in statistical analyses (Table 1).

Seasonal patterns of the common species (1996)—Sporulation was distinctly seasonal, and seasonal differences between species were significant. Spore counts varied signifi-
cantly with date, as indicated by the multivariate analysis of variance (Table 2). Seasonality is the result of differences in sporulation patterns between fungal species, as tested by the seasonal term within the multivariate profile analysis (interaction of species’ profiles with sampling date: Table 3; Fig. 2). The latter analysis demonstrates that AM fungal species displayed contrasting seasonal patterns.

For example, spores of Ac. colossica were significantly more common in the warm season (Table 4); four times as many spores were recovered in June vs. either February or December (Fig. 2A). In contrast, spores of Gi. gigantea were significantly more common in the cool season (Table 4); half as many spores were found in June vs. either February or December (Fig. 2A). While spore densities of S. calospora varied significantly with date (Table 4), the fungus was not an exclusively warm or cool season sporulator. Rather, sporulation of S. calospora peaked at both the end of spring and the end of summer (Fig. 2A). However, spores of S. calospora appeared to be most common in the warm season (Fig. 2A). Spore densities of Archaeospora leptoticha, Acaulospora morrowiae, and S. pellucida appeared to rise and fall in concert (Fig. 2C); these spores were common in February and declined in number through August, but were common again in October and December. However, seasonal trends were significant for S. pellucida only (Table 4). Densities of Glomus clarum spores increased throughout the year (Fig. 2C); seasonal trends were significant (Table 4).

Seasonal patterns of Ac. colossica and Gi. gigantea (1996 and 1997)—Contrasting and seasonal sporulation patterns were recorded in both 1996 and 1997. The United States’ National Climatic Data Center (www.ncdc.noaa.gov) recorded 142.21 cm of rain in Durham, North Carolina in 1996, and 103.71 cm of rain in 1997. Differences in precipitation were concentrated in 1 mo; in September 1996, Hurricane Fran brought 42.27 cm of rain to Durham. In September 1997, only 7.8 cm of rain were recorded in Durham. Despite the very different rainfall patterns in 1996 and 1997, seasonal sporulation patterns of Ac. colossica and Gi. gigantea were consistent in 1996 and 1997. Patterns were first evaluated by testing for a seasonal profile effect (profile × date) using the interaction between the seasonal profile effect and year (profile × date × year) as the error term (as described in MATERIALS AND METHODS; Wilks’ lambda $F_{5,5} = 9.39$ and $P < 0.014$);

![Fig. 2](image-url). Seasonal patterns of arbuscular mycorrhizal fungal sporulation, 1996. Number of spores is the total number of spores counted in a given month from nine sites (450 cm3 of soil). (A) Seasonality of Gigaspora gigantea, Acaulospora colossica, and Scutellospora calospora. (B) Seasonality of Gigaspora gigantea “new” and “old” spores. (C) Seasonality of Archaeospora leptoticha, Acaulospora morrowiae, Scutellospora pellucida, and Glomus clarum.

the analysis demonstrated that Ac. colossica and Gi. gigantea maintained contrasting seasonalities across the two years. In individual ANOVAs, date proved to be a strong and significant effect for each species (Ac. colossica, $F_{5,44} = 4.89$, $P < 0.0012$; Gi. gigantea, $F_{5,44} = 2.45$, $P < 0.049$), demonstrating

Table 2. Effects of sampling date and site (1996 data), multivariate analysis (MANOVA).

<table>
<thead>
<tr>
<th>Effect of</th>
<th>Numerator df</th>
<th>Denominator df</th>
<th>Wilks’ lambda</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling date</td>
<td>35</td>
<td>141</td>
<td>0.115</td>
<td>2.72***</td>
</tr>
<tr>
<td>Site</td>
<td>56</td>
<td>183</td>
<td>2.17×10^{-3}</td>
<td>6.93***</td>
</tr>
</tbody>
</table>

*** $P \leq 0.0005$.

Table 3. Effects of sampling date and site (1996 data), multivariate analysis (Multivariate Profile Analysis).

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Numerator df</th>
<th>Denominator df</th>
<th>Wilks’ lambda</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>With sampling date</td>
<td>30</td>
<td>138</td>
<td>0.179</td>
<td>2.47***</td>
</tr>
<tr>
<td>With site</td>
<td>48</td>
<td>171</td>
<td>5.95×10^{-3}</td>
<td>6.54***</td>
</tr>
</tbody>
</table>

*** $P \leq 0.0005$.

Table 4. Effects of sampling date and site (1996 data), individual analyses (ANOVA).

<table>
<thead>
<tr>
<th>AM fungal species</th>
<th>Sampling date, df *</th>
<th>Site, df †</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acaulospora callosa</td>
<td>3.13*</td>
<td>3.05*</td>
</tr>
<tr>
<td>Acaulospora morrowiae</td>
<td>1.78</td>
<td>7.01***</td>
</tr>
<tr>
<td>Archaeospora leptoticha</td>
<td>1.81</td>
<td>21.36***</td>
</tr>
<tr>
<td>Glomus clarum</td>
<td>4.29**</td>
<td>1.51</td>
</tr>
<tr>
<td>Gigaspora gigantea</td>
<td>2.82*</td>
<td>11.15***</td>
</tr>
<tr>
<td>Scutellospora calospora</td>
<td>2.42*</td>
<td>13.95***</td>
</tr>
<tr>
<td>Scutellospora pellucida</td>
<td>3.45*</td>
<td>6.24***</td>
</tr>
</tbody>
</table>

* $P \leq 0.05$, ** $P \leq 0.005$, *** $P \leq 0.0005$.

† df = 5, error df = 39.

†† df = 8, error df = 39.
that seasonal patterns were strong across these two years. In order to test whether seasonal trends are predictable, we treated year as a random effect and tested the seasonal patterns by using the interaction of date and year as an error term. In this more conservative analysis, date remained a significant predictor of Ac. colossica sporulation ($F_{5,5} = 5.81, P < 0.038$), but not of Gi. gigantea sporulation ($F_{5,5} = 2.26, P < 0.20$). For both species, the numbers of spores were not significantly different in the same month of different years (Ac. colossica: interaction of date and year, $F_{5,21} = 0.84, P < 0.53$; Gi. gigantea: interaction of date and year, $F_{5,21} = 1.08, P < 0.38$).

Seasonal patterns of new and old Gi. gigantea spores (1996 and 1997)—By comparing the seasonalities of new and old Gi. gigantea spores, we were able to confirm that Gi. gigantea sporulates in the cool season. In 1996, new spores were common in the cool months, but were rare in June (Fig. 2b). Older spores were consistently found in each month (Fig. 2b). Numbers of new Gi. gigantea spores varied significantly with date ($F_5 = 5.80, P < 0.0013$), but numbers of old Gi. gigantea spores did not ($F_5 = 0.92, P < 0.46$). Furthermore, ratios of new to old Gi. gigantea spores differed significantly with date ($F_5 = 4.15, P < 0.0083$) and peaked in the cool months (Fig. 2b). By combining data for 1996 and 1997, we tested the consistency of the seasonal patterns across both years, again treating year as a random effect and using the interaction of date and year as an error term (as described above). In contrast to the results for total numbers of Gi. gigantea spores, date was a significant predictor of the ratio of new to old spores across years ($F_{1,4} = 7.90, P < 0.034$), even under this conservative test. Furthermore, ratios of new to old spores were not significantly different in the same month of different years, as tested by ANOVA (interaction of date and year, $F_{4,33} = 0.32, P < 0.87$).

Spatial patterns (1996 and 1997)—The seven common species displayed contrasting spatial distributions in 1996. The overall spatial effect on spore counts was highly significant in the multivariate analysis of variance (Wilks’ lambda $F_{8,183} = 6.93, P < 0.0001$), with much of this effect being due to the consistent differences in spatial patterns between the fungal species as tested by profile analysis (interaction of species’ profiles with site: Wilks’ lambda $F_{48,171} = 6.54, P < 0.0001$). Spores of Ac. colossica, Gi. gigantea, S. calospora, and S. pellucida were extracted from every site (Fig. 3); however, analyses of the individual data sets indicated that spores were significantly more common in some sites versus others (Table 4). Both Ac. colossica and Gi. gigantea were particularly abundant at sites A3 and C3 (Fig. 3). Archaeospora leptoticha and Acaulospora morrowiae displayed significant spatial patterns (Table 4). Spores of Ar. leptoticha were generally restricted to sites C3 and C2 (Fig. 3) (as were spores of Glomus leptotichum). Acaulospora morrowiae spores were scattered throughout B and C sites, but were particularly common at site B2 (Fig. 3). Glomus clarum demonstrated no spatial pattern (Table 4); although a disproportionate number of spores appear to have been found at site A3 (Fig. 3), the data are biased by the exceptional number of spores found from this site in one month (44 of 160 total spores, December 1996). As the spatial pattern was not consistent through time, it was not significant.

Spores of infrequent and rare species were found in low numbers and the data were not amenable to statistical analyses, however, species were spatially structured. For example, spores of S. reticulata were found in five months and in each month the spores were extracted from a single site (Table 1). Similarly, spores of the undescribed species Acaulospora “copper” were restricted to a single site (Table 1). Although spores of Gi. gigantea were found at the same sites in 1996 and 1997, spores of Ac. colossica were not. The test for a spatial profile effect (profile × site) using the interaction between the spatial profile effect and year (profile × site × year) as the error term (as described above) was not significant (Wilks’ lambda $F_{4,4} = 2.46, P < 0.20$; Ac. colossica and Gi. gigantea did not maintain contrasting spatial distributions across the two years. This is probably a result of the shifting spatial patterns displayed by Ac. colossica: when year was treated as a random effect (as described above) spatial patterns proved to be predictable for Gi. gigantea ($F_{5,4} = 13.09, P < 0.014$) but not for Ac. colossica ($F_{4,4} = 3.97, P < 0.11$).

DISCUSSION

Seasonal patterns—Arbuscular mycorrhizal fungal species were found to have contrasting and seasonal phenologies (Tables 2 and 3). The contrast is especially obvious when the sporulation of Ac. colossica is compared to the sporulation of Gi. gigantea; Ac. colossica spores were most abundant in the warm months of summer, but Gi. gigantea spores were common in the cool months of winter (Fig. 2). Seasonalities were consistent across the two years of this study, despite the very different patterns of precipitation in 1996 versus 1997. Differences between Ac. colossica and Gi. gigantea were also consistent with seasonal patterns recorded in previous years at this site (Schultz, 1996; Schultz, Bever, and Morton, 1999). The seasonal differences in spore densities probably reflect seasonal differences in spore formation. As detailed in MATERIALS AND METHODS (Gemma, Koske, and Carreiro, 1989; Douds and Schenk, 1990; Gazey, Abbott, and Robson, 1992), sporulation follows periods of physiological activity. Therefore, our data suggest that Ac. colossica is physiologi-
cally active in the cool season, while *Gi. gigantea* is physiologically active in the warm season.

Our data are supported by several additional lines of evidence. *Gigaspora gigantea* is easy to culture in a warm season greenhouse (Schultz, 1996; personal observation), but *Ac. colossica* is very difficult to culture in a warm season greenhouse (Schultz, Bever, and Morton, 1999). In contrast, *Ac. colossica* sporulates profusely in a cool season greenhouse (Bever et al., 1996). Furthermore, when grown in a cool season greenhouse, *Ac. colossica* sporulates abundantly with a markedly cool season host (*Allium vineale*). *Gigaspora gigantea* sporulated poorly with this cool season host (Bever et al., 1996); however, *Gi. gigantea* is easily cultured with the tropical grass *Sorghum sudanense*. Finally, developmental evidence suggests that *Ac. colossica* sporulates in late spring. *Acaulospora colossica* sporulates by developing a thin-walled saccule on the terminal branch of a fertile hypha; each saccule forms a spore. After spores are formed, the saccule degrades or breaks off (Schultz, Bever, and Morton, 1999); in this study, saccules were only found in April (personal observation). Our data strongly imply that *Ac. colossica* is physiologically active in the cool season and lasts through the summer as a dormant spore. Conversely, *Gi. gigantea* is likely to be physiologically active in the warm season and over-winter as a dormant spore.

Populations of *Gi. gigantea* in coastal sand dune communities of the eastern United States also sporulate in late fall and winter. Gemma and Koske (1988) recorded peak numbers of *Gi. gigantea* spores in late fall (November and December); Lee and Koske (1994b) recorded peak numbers of healthy *Gi. gigantea* spores in winter (January and February). To our knowledge, the sand dunes of Rhode Island and grasslands of North Carolina have no species of plant in common. The climate of the two habitats is also very different. The concordance of data across different communities suggests that the seasonality of *Gi. gigantea* is a species-level property.

While our study was designed to document seasonal differences between *Ac. collosisca* and *Gi. gigantea*, we found that most of the common fungi were significantly seasonal (Table 4). Many of these fungi seemed to sporulate in the fall (e.g., *S. pellucida*). However, *S. calospora* appeared to sporulate in the spring as well as the fall, and spores of *Gl. clarum* were most common in winter.

Aseasonal species may be cryptically seasonal. The data are observational and a conservative measure of AM fungal seasonality. For example, AM fungal species may experience differential parasitism or predation in nature: the spores of a palatable species will be ephemeral and the species’ seasonality obvious; the spores of a resistant species will persist in the soil. The second species may appear aseasonal.

The unusual exponential pattern of *Gl. clarum* sporulation may have been caused by a hurricane that swept through our field site on 6 September 1996. The sporulation of *Gl. clarum* increased dramatically in October and December (Fig. 2). In February and April, *Gl. clarum* had been found in a single plot, but in October and December, *Gl. clarum* was recovered from each of the nine plots (data not shown). *Glomus clarum* may have responded to the extraordinary amounts of rain associated with the hurricane by invasively sporulating through the site, and perhaps the population of *Gl. clarum* at this site sporulates in association with exceptional amounts of precipitation.

The seasonality of AM fungal sporulation in natural habitats has been documented in only a few studies. In contrast, a number of classic papers explore temporal patterns of fungal sporulation in agricultural systems (Hayman, 1970; Sutton and Barron, 1972; Saif, 1977; Rich and Schenck, 1981); a majority of these studies record general increases in the sporulation of all species as crops mature and are harvested. Although work by Merryweather and Fitter (1998) indicated that spores of AM fungi within sycamore- or oak-dominated woodlands are aseasonal, studies by Sylvia (1986), Gemma, Koske, and Carreiro (1992), and Stürmer and Bellei (1994) in maritime dune systems of Florida, Massachusetts, and Santa Catarina Island (Brazil) suggested distinct seasonality for different species of fungi within a single habitat. A study by Sanders and Fitter (1992b) of root infection also demonstrated that mycorrhizal colonization of plants might be temporally variable, although in this study, fungi were not identified to species. Distinct seasonal guilds of AM fungi might be a typical feature of fungal communities.

The distinct seasonality of AM fungal species suggest a temporal partitioning of plant resources; by specializing on cool or warm season plants, fungi would minimize interspecific competition for roots. In fact, our data suggest that fungi derive variable benefits from their associations with plants. For example, if *Ac. colossica* is a specialist of *Allium vineale* or other cool season plants, it will derive a limited benefit from associations with warm season plants; conversely, *Gi. gigantea* may derive its greatest benefit from associations with warm season plants. The divergent seasonality of *Ac. colossica*, *Gi. gigantea*, and other fungi may facilitate the coexistence of a diverse group of AM fungal species within the North Carolina grassland. Our data also provide additional evidence for the distinct ecologies of fungi that coexist within a single site (e.g., Bever et al., 1996; Van der Heijden, 1998a).

Matching seasonality of plants and AM fungi might reflect a level of specificity between plants and fungi. In fact, three lines of correlational evidence are suggestive of specificity between *Ac. colossica* and the cool season plant *Allium vineale*. First, *Ac. colossica* and *A. vineale* are both physiologically active during the cool season and dormant over the warm season. The peak sporulation period of *Ac. colossica* coincides with the period in which *A. vineale* dies back into its bulb (Fowler and Antonovics, 1981). Second, as mentioned above, *Ac. colossica* sporulates preferentially with *A. vineale* when growth of *Ac. colossica* is compared in *A. vineale* and other cool season hosts (Bever et al., 1996). Finally, the distributions of *Ac. colossica* and *A. vineale* are positively correlated in the field (Schultz, 1996). Specificity between *Ac. colossica* and *A. vineale* could generate a positive feedback dynamic in which a high initial abundance of *A. vineale* would increase the abundance of *Ac. colossica*, thereby increasing the relative success of *A. vineale* (Bever, Westover, and Antonovics, 1997; Bever, 1999). However, a demonstration of this dynamic will require further experimentation.

Spatial patterns—Fine-scale spatial patterns were recorded for both common (Tables 2 and 3) and infrequent species. For example, the common fungus *Arachaeospora leptoticha* was generally restricted to two plots (Table 4; Fig. 3); although the rare species *S. reticulata* sporulated in 5 mo, spores were only recovered from a single plot (Table 1). The spatial arrangements of *Ac. leptoticha* and its hypothesized synanamorph, *Glomus leptotichum*, provide further evidence of their formation from a common mycelium (Morton, Bever, and Pfleger, 1997; Morton and Redecker, 2001); although spores of *Gl.
leptotichum were rare, they were generally collected within the distribution of the more common _Ac. leptoticha_. The spatial structure of plant communities is obvious to ecologists, and this work demonstrates that fungal communities can also be spatially patterned. Fungal communities may be highly variable at a local scale; comparisons of the individual plots of this study show that the community of one site can be very different from the community of a second and nearby site (e.g., compare plots A3 and B3, Fig. 3).

Implications for plant ecology — The coexistence of dispersately season and spatial AM fungi illuminates our understanding of the interactions between AM fungi and plants. It suggests a mechanism through which the diversity of an AM fungal community might drive the diversity of a plant community, as has been demonstrated in experimental grasslands of North America and Europe (Van der Heijden et al., 1998b). Our observations suggest that the success of cool and warm season guilds of plants is dependent upon plants’ associations with cool and warm season guilds of fungi. The maintenance of a functionally diverse plant community may depend on the coexistence of guilds within the fungal community. Furthermore, spatial patterns within the fungal community might also have direct impacts on plant community diversity and structure. A local community of fungi may control the local composition and diversity of plants (van der Heijden et al., 1999b). Therefore, the fine-scale heterogeneity of the fungal community may increase the regional diversity of the plant community. Small and diverse patches of AM fungi may structure the plant community as a mosaic of plant types, especially if some plants are restricted within the boundaries of a particularly effective symbiont. Clearly, the seasonal and spatial heterogeneity of the fungal community might have strong impacts on plant community processes.

LITERATURE CITED

KELLEY, S. E. 1985. The mechanism of sib competition for the maintenance of sexual reproduction in _Anthoxanthum odoratum_. Ph.D. dissertation, Duke University, Durham, North Carolina, USA.

MOOD, H. S., AND J. W. HENDRIX. 1986. The mycorrhizal fungus _Gnomus_
Neighborhood models of plant population dynamics. 2.

