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How do the topology and geometry of a tubular network affect the spread of particles within
fluid flows? We investigate patterns of effective dispersion in the hierarchical, biological transport
network formed by Physarum polycephalum. We demonstrate that a change in topology – pruning
in the foraging state – causes a large increase in effective dispersion throughout the network. By
comparison, changes in the hierarchy of tube radii result in smaller and more localized differences.
Pruned networks capitalize on Taylor dispersion to increase the dispersion capability.

PACS numbers: 87.18.Vf, 87.16.A-, 87.16.Wd

Transport due to fluid flowing through tubular net-
works is of great interest, because it has technologi-
cal applications to biomimetic microfluidic devices [1–3],
foams [4], fuel cells [5], and other filtration systems [6]
and lies at the heart of extended organisms that rely on
transport networks to function: animal vasculature [7, 8],
fungal mycelia [9], and plant tubes [10–12]. A big chal-
lenge regarding transport networks is to understand how
network architecture changes the efficiency of particle
spread throughout a network. While it is experimen-
tally tedious to map particle transport in a network, pre-
dicting the spread of particles is also a theoretical chal-
lenge [13–20]. Attempts to understand how the network
topology and geometry affect the transport of particles
are scarce [17]. Alternatively, we can study the dynamic
changes of tubular network architecture in living beings.
Organisms spontaneously reorganize their transport net-
works, including tube pruning [21–24]. Examples are
vessel development in zebra fish brain development [21],
or growth of a large foraging fungal body [22]. Here,
we study the slime mold Physarum polycephalum which
emerged as an inspiring and yet puzzling model for ‘in-
telligent’ living transport networks.

P. polycephalum like foraging fungi, actively adapts
its network to environmental cues [25–29]. Networks
connecting multiple food sources are a good compro-
mise between efficiency, reliability, and cost, compara-
ble to human transport networks [29]. Fluid cytoplasm
enclosed in the tubular network exhibits nonstationary
shuttle flows [30–32] driven by a peristaltic wave of con-
tractions spanning the entire organism [33]. Investiga-
tions of transport in these networks are so far limited to
estimates based on the minimal distance between tubes
[29, 34, 35]. We tracked a well-reticulated individual
trimmed from a larger network (Fig. 1). After several
hours, the thin central tubes were abandoned in favor of
a few large central tubes and globular structures at the
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FIG. 1. Bright-field image of a P. polycephalum individual
cut from a larger network (left) and the same individual 100
contraction periods later (right).

periphery. How does this radical change of topology af-
fect the transport capabilities of the individual? What
role do hierarchical tube radii play?

We present a method to efficiently map the effective
dispersion of particles from any initiation site throughout
any network with nonstationary but periodic fluid flows.
We use this method to study the change in dispersion pat-
terns as an individual adjusts its morphology after trim-
ming (Fig. 1). We find that the pruned state presents,
on average, higher transport capabilities than the initial
state. Emergent central tubes concentrate flow, enabling
higher flow velocities across the entire network. Thus,
the organism capitalizes on Taylor dispersion to increase
particle spread. Finally, we study the influence of hier-
archical tube radii by comparing hierarchical unpruned
and pruned states to their theoretical counterparts with
equal tube radii. We find that radial hierarchies influ-
ence dispersion patterns on local scales, but changes in
average transport capabilities require pruning.

To prepare P. polycephalum networks, plasmodia
from Carolina Biological Supplies were grown on 1.5%
(wt/vol) agar without nutrients and fed daily with au-
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toclaved oat flakes (Quaker Oats Company). A newly
colonized oat flake was transferred to a fresh agar dish
8-24 h before imaging. Before imaging, slime mold net-
works were trimmed to remove growing fans and oat
flakes. Bright-field microscopy images were obtained us-
ing a Zeiss Axio Zoom V16 stereomicroscope.

Network architectures were extracted with a Matlab
program and discretized into M nodes connected by N
tubes of length ` = 10px and measured average radius
a0,ij (ij designs the tube connecting vertices i and j).
Tubes of P. polycephalum undergo a peristaltic wave of
contractions. Tube radii aij(t) oscillate about a0,ij with
contraction period T , inducing fluid flow uij throughout
the network. Given the network architecture and the
periodic contractions, the flow throughout the network
is computed by use of Kirchhoff’s law at every node, see
Supplementary Information Sect. 1 for details.

To describe how quickly particles disperse from any
given tube throughout a network, we want to quantify
the growth rate of the area of a cloud of dispersing par-
ticles. After a short transient, the cloud disperses, on
average, in a diffusive way, e.g. the radius squared of
the cloud is proportional to time. We wish to evaluate
that proportionality constant, that we call effective dis-
persion. For that we develop in the following a numerical
method, the Dispersing Cloud, corresponding to a sim-
plified resolution of the particle dynamics in the network.
The method is most efficient to characterize the flow of
particles in large networks.

The dispersion of particles due to fluid flow in a tubular
network is, in general, a multidimensional problem. In
the case of P. polycephalum, the tubes are long enough
to smooth out variations in the concentration along the
cross-section ` � ua2

0/κ. The cross-sectionally averaged
concentration of particles c(z, t) in each single tube is,
thus, efficiently described by Taylor’s dispersion [36, 37]:

∂c

∂t
=

∂

∂z

{
−uc+

(
κ+

u2a2

48κ

)
∂c

∂z

}
(1)

where κ = 10−10m2/s is the molecular diffusivity of par-
ticles. Fig. 2a) shows the evolution of the area of a cloud
of dispersing particles starting from a single tube as de-
scribed by Eq. 1. Solving Eq. 1 for all starting points
in the trial network considered (inset of Fig. 2a) takes
several days and is thus unreasonable for large networks.

To capture the trend of these dispersion dynamics with
time in a more succinct way, we first aim at deriving
the local dispersion properties in the network. After
that step, calculating the long time dynamics will require
only a subtle averaging of these local dispersion proper-
ties over time. Thinking of the dispersion dynamics as
a random walk of particles, we write the local disper-
sion, representing the instantaneous diffusion coefficient
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FIG. 2. a) Change in the area of a cloud of dispersing par-
ticles, according to the numerical solution of the full Taylor
dispersion and the dispersion cloud method, for the starting
point circled in blue; see network inset. b) Particles spread in
a random walk defined by transition probabilities and times,
allowing the definition of local dispersion coefficients. c) Par-
ticles effectively spread as a Gaussian cloud of radius ri from
site i, with a rate averaged over the local dispersions. This
method yields the effective dispersion at long time scales in
d).

at node i, as:

Di =
∑

k∈nn(i)

pik
`2

2tik
(2)

where nn(i) are the nearest node neighbors of i, pik is
the average probability of entering tube ik, and tik is
an average transition time in that tube, see Fig. 2b,
and c. The transition probability and time are deter-
mined by the flow dynamics, in the spirit of [14]. We
introduce time-independent quantities by averaging vari-
ables over the period of the oscillations T . For a particle
at node i, the probability of entering one of the connected
tubes nn(i) is proportional to the flux at the entry of
that tube. We thus define pij = qrms,ij/

∑
k∈nn(i) qrms,ki,

where qrms,ij is the time-averaged root mean square flux
in tube ij. The transition time is the minimum of ei-
ther diffusion-dominated or advection-dominated trans-
port: tij = min(tdiff,ij , tadv,ij). We take the effective
diffusivity in Eq. 1 to determine the diffusion-dominated
transition time to be:

tdiff,ij =
`2

2

〈
1

κ+
u2
ija

2
ij

48κ

〉

`,T

, (3)

where we average along the entire tube of length ` and
over the period T . Averaging over the period is justified
because the period is small compared to the time scales
we are interested in. To compute the time it takes a
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particle to transverse a tube by advection we in general
have to solve for the trajectory of the particle at any
given start time t0 ∈ T ,

dz(t)

dt
= uij(z, t), z(t0) = 0, z(t0 + tadv,ij(t0)) = `. (4)

For stationary flows the advection time is simply tadv,ij =
uij/`ij . For the nonstationary flows arising from the
peristaltic wave in P. polycephalum we analytically solve
Eq. 4 by approximating the oscillatory flow velocities
with uij ≈ u0,ij cos(ω(t − t0)), where u2

0,ij = 2
〈
u2
ij

〉
T

.
The diffusive time scale defined by Eq. 3 acts as a cutoff
for tubes in which the fluid velocity is insufficient to allow
a particle to traverse the tube before the flow reverses,
e.g. when Eq. 4 has no solution.

Based on these local dispersion properties, we now de-
fine laws for the evolution of the area r2

i of a cloud of
particles spreading from an initial node i, and define the
effective dispersion after the transient initial phase as

Di = lim
t�T

r2
i (t)

4t
, (5)

where the limit indicates times that are large, compared
to the initial transition time. At this point effective dis-
persion saturates; in most of our individuals saturation
is reached after a few periods. Effective dispersion thus
describes the growth of the radius of a cloud of particles
from initiation node i with

√
4Dit to the boundary of

the network. We assume that the probability of finding
a particle at a Euclidian distance d from node i is propor-

tional to a circular Gaussian:
(
2πr2

i

)−1/2
exp(−2d2/2r2

i ),
with r2

i = 4Dit [38]. Over time the cloud reaches nodes
that have different local dispersion properties, and thus
r2
i grows with the average over the local dispersion coef-

ficients within the cloud, weighted by the probability of
finding particles at that point:

δr2
i =

4δt

K

∑

m 6=i

Dm√
2πr2

i

exp

(
−d

2
im

2r2
i

)
, (6)

where dim denotes the Euclidean distance between nodes

and K =
∑
m 6=i

(
2πr2

i

)−1/2
exp(−d

2
im

2r2i
) is a normaliza-

tion factor, see Fig. 2c and d. In flows with a net drift
the Gaussian center would move with that drift veloc-
ity. Effective dispersion takes the detailed geometry of
the network into account. As depicted in Fig. 2d), a
node with low local dispersion coefficient Di, but close
to a node with a high Dj has a high effective dispersion
Di. Iteratively solving for the variance of the dispersing
cloud of particles still reproduces the solution for Tay-
lor dispersion on a network very well, see Fig. 2a) (and
Supplementary Information Fig. S2). The computation
of the dispersing cloud with the method of Eq. 6 for any
starting point over the entire trial network of Fig. 2a)
takes only a few minutes.
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FIG. 3. a) Maps of the root mean square flow velocity, and
b) effective dispersion, for the initial network (left) and the
same individual 100 contraction periods later (right).

The concept of effective dispersion allows us to effi-
ciently parse how quickly particles will spread from any
location within a large transport network. We use this
method on P. polycephalum individuals (Fig. 1) to show
that pruning - a change in the topology of the network -
significantly enhances global network transport capabili-
ties (Fig. 3). In an unpruned network, the flow pattern
is high along the direction of the peristaltic wave (top
left to bottom right) growing to its highest values at the
network’s center. In the pruned network, the flow is high
in all central tubes. The mass accumulated in all of the
many peripheral tubes has to pass through only a few
central tubes, and so the velocity in these tubes is higher
than in the unpruned network. As expected from Tay-
lor dispersion Eq. 1, tubes with high flux enable parti-
cles to spread effectively. On average over the network -
weighted by the volume of the tubes -, effective dispersion
for the pruned case is 36% higher than in the unpruned
case, being notably higher at the center. This result is
qualitatively conserved among independent experiments
(see Supplementary Information Sect. 3). Pruning cap-
italizes on Taylor dispersion to enhance transport. Al-
though flow maps are only slightly different, effective dis-
persion maps reveal differences. The large central tubes
of the unpruned and pruned networks have comparable
flow velocities and sizes, yet the proximity of numerous
small tubes in the unpruned case decreases effective dis-
persion by about a factor of two. In the pruned network,
particles do not get lost in the more slowly propagating,
smaller central tubes found in the unpruned network, and
can be efficiently flushed further away.

The topological changes to a network imposed by prun-
ing appear to be the limiting case of geometrical changes
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FIG. 4. Average effective dispersion as a function of dis-
tance to the center for unpruned (a) and pruned (b) states
(shaded areas mark standard deviations). The base dashed
line represents the molecular diffusivity κ = 10−10m2/s. Note
the difference in scales. Blue and black curves represent data
from hierarchical (ii) and nonhierarchical cases (i), respec-
tively. Insets are colored to show effective dispersion.

to the hierarchy of tube radii. We demonstrate now that
geometric changes in a network can impose heteroge-
neous transport capabilities, but large changes in overall
effective dispersion require pruning. To assess the impact
of a hierarchical organization of tubes we compare the
dispersion properties of pruned and unpruned states (ii)
to a reference, nonhierarchical network with equal radii
but the same overall mass (i), see Fig. 4. In an unpruned
network, (a), average effective dispersion is about 11%
higher when radii have no hierarchy, and in a pruned
network, (b), the difference is less than 1%. These re-
sults also translate qualitatively to other individuals (see
Supplementary Information Sect. 3). Maps of effective
dispersion in the unpruned network reveal that a hier-
archical organization localizes regions of high transport
capabilities along and near larger central tubes, rather
than homogeneous patterns of dispersion, as found in the
reference nonhierarchical network. In the pruned net-
work, a hierarchical organization enhances the dispersal
properties of the center, while the spreading efficiency in
peripheral tubes is barely impacted. Yet, the measured
change in effective dispersion may explain previously ob-
served changes in the mixing rate with network geometry
[39].

In summary, we investigated the impact of topology
and geometry on particle flow within a live, tubular net-
work by observing P. polycephalum. By introducing the
concept of effective dispersion, we provide an efficient
method to map how quickly particles disperse through-
out a transport network from any initiation site. Ef-
fective dispersion measures the growth rate of an area
of dispersing particles, and can be used for any station-
ary or nonstationary but periodic flow. Regarding the
analysis of transport network properties, effective disper-
sion gives a faithful yet efficient mapping of flow-driven
transport dynamics that are only to a certain extent cap-
tured by measures like “betweenness” [40, 41] and mean
first passage time measures [42]. We employed the ef-
fective dispersion method to compare an initially well-
reticulated network formed by P. polycephalum with its
evolved state 100 contraction periods later. We observe
that an alteration of network topology, massive pruning,
leads to a significant increase in global effective disper-
sion. The remaining large tubes serve as bottlenecks for
flows. Capitalizing on Taylor dispersion, particle diffu-
sivity is strongly enhanced not only at the center but
throughout the network. By comparison, changes in the
geometry of a network caused by a hierarchical organi-
zation of tube radii, while inducing specific zones of high
transport capabilities, overall have a smaller impact on
effective dispersion than pruning. By observing P. poly-
cephalum we learned that pruning increases transport
properties tremendously. It is fascinating to speculate
that pruning in other biological systems, for example,
during vessel development in zebra fish brain develop-
ment [21] or during growth of a large fungal body [22],
serve a similar objective of enhanced effective dispersion.
Pruning itself might be triggered by the concentration
of specific dispersing particles. Pruning is also tightly
governed by the initial pattern of hierarchy, and the dy-
namic entanglement between hierarchy and pruning re-
mains unsolved. Investigating the mechanisms allowing
for pruning would be highly instructive in the process of
understanding the overall organization of organisms.
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(2000).

[26] T. Nakagaki, M. Iima, T. Ueda, Y. Nishiura, T. Saigusa,
A. Tero, R. Kobayashi, and K. Showalter, Phys. Rev.
Lett. 99, 068104 (2007).

[27] T. Nakagaki and R. D. Guy, Soft Matter 4, 57 (2008).
[28] A. Dussutour, T. Latty, M. Beekman, and S. Simpson,

Proc. Natl. Acad. Sci. U.S.A. 107 (10), 4607 (2010).
[29] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber,

M. D. Fricker, K. Yumiki, R. Kobayashi, and T. Naka-
gaki, Science 327, 439 (2010).

[30] N. Kamiya, Cytologia 15, 183 (1950).
[31] P. A. Stewart and B. T. Stewart, Exp. Cell Res. 17, 44

(1959).
[32] G. Isenberg and K. Wohlfarth-Bottermann, Cell Tissue

Res. 173, 495 (1976).
[33] K. Alim, G. Amselem, F. Peaudecerf, M. P. Brenner,

and A. Pringle, Proc. Natl. Acad. Sci. USA 110, 13306
(2013).

[34] M. D. Fricker, L. Boddy, T. Nakagaki, and D. P. Bebber,
Adaptive Networks (Springer Berlin Heidelberg, 2009)
Chap. 4.

[35] W. Baumgarten and M. J. B. Hauser, Phys. Biol. 10,
026003 (2013).

[36] G. Taylor, Proc. R. Soc. A 219, 186 (1953).
[37] R. Aris, Proc. R. Soc. A 235, 67 (1956).
[38] C. W. Gardiner, Handbook of Stochastic Methods, 2nd Ed

(Springer, Berlin, 1985).
[39] T. Nakagaki, H. Yamada, and T. Ueda, Biophys. Chem.

84, 195 (2000).
[40] M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
[41] K. I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87,

278701 (2001).
[42] V. Tejedor, O. Bénichou, and R. Voituriez, Phys. Rev.

E 83, 066102 (2011).
[43] See Supplemental Material [url], which includes Refs. [44-

50]
[44] A. Telea and J. J. Van Wijk, in Proc. EG/IEEE VisSym,

edited by D. Ebert, P. Brunet, and E. Navazo (2002).
[45] N. R. Howe, “Matlab implementation of contour-pruned

skeletonization,” .
[46] D. Frenkel and B. Smit, Understanding Molecular Simu-

lation: From Algorithms to Applications, second edition
(Academic Press, 2002) p. 638.

[47] D. J. MacKay, Information Theory, Inference, and
Learning Algorithms (Cambridge University Press, 2003)
Chap. 4.

[48] K. Ito and K. Kunisch, Lagrange multiplier approach to
variational problems and applications (Philadelphia, PA:
Society for Industrial and Applied Mathematics, 2008) p.
341.

[49] G. Mercer and A. Roberts, Japan J. Indust. Appl. Math.
11, 499 (1994).

[50] R. Swaminathan, C. P. Hoang, and A. Verkman, Bio-
phys. J. 72, 1900 (1997).

http://www.cs.smith.edu/~nhowe/research/code/
http://www.cs.smith.edu/~nhowe/research/code/


Pruning to Increase Taylor Dispersion

in Physarum polycephalum Networks

Supplemental Material

Sophie Marbach,1, 2 Karen Alim,1, 3 Natalie Andrew,1, 3

Anne Pringle,4 and Michael P. Brenner1

1Harvard John A. Paulson School of Engineering and Applied

Sciences and Kavli Institute for Bionano Science and Technology,

Harvard University, Cambridge, Massachusetts 02138, USA

2International Centre for Fundamental Physics,

École Normale Supérieure, PSL Research University, 75005 Paris, France

3Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany∗

4Departments of Botany and Bacteriology,

University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

(Dated: November 23, 2016)

∗ karen.alim@ds.mpg.de

1



I. IMAGE ANALYSIS, AUTOMATED NETWORK EXTRACTION, AND COM-

PUTATION OF FLOWS

a. Image analysis and automated network extraction Live tubes of P. polycephalum

oscillate in diameter and thereby participate in active transport. The oscillations in diameter

result in oscillations of the intensity of transmitted light over time. In the bright field data

live tubes often have similar intensities as the leftover slime from retracted tubes. To identify

live tubes we calculate the variance in intensity over the course of 60 consecutive frames (each

3 seconds apart) around a time point of interest. The variance of retracted tubes is at least

an order of magnitude smaller than the variance of active tubes. This allows us to create a

mask that excludes all pruned tubes for the analysis of tube dynamics.

For the analysis we extract the network architecture by first deconvolving each bright-

field image with a kernel of three pixels in diameter to erase small scale noise. Subsequently

we threshold all images into a binary image with the same manually determined threshold.

Small holes are removed and the biggest connected component is kept as the network. In

the next step the network in each image is skeletonized [1, 2]. Along unevenly shaped tubes

the skeleton algorithm gives rise to short branches that correspond to non-physical tubes.

We remove these artefacts by thresholding the skeleton. The tube diameter at every pixel

along the skeleton is then measured as the minimum diameter of a circle around that pixel

that still entirely lies within the network determined by the binary image. Then every point

along the skeleton is identified with its corresponding counterpart in every image over time

and this gives the evolution of the diameter over time. Lastly, we determine the local time-

averaged tube diameter by a moving time average with a kernel of one hundred frames, each

frame being 3 seconds apart.

The resulting network is discretized into small tubes of length `. A vein in the network

(that can be up to a few millimeters long) is accounted for by many small straight tubes, as is

illustrated in the schematic of Fig. S1. We impose a discretization length of ` = 10px to have

a regular pattern. Note that vein segments are shorter but are accounted for by the same

length ` = 10px in the analysis to facilitate numerical computation. Since actual the average

length of vein segments is always larger than 9px, the artefact introduced by this procedure

is negligeble. This value of ` = 10px is chosen as the most faithful representation of the

actual network structure, without over-discretizing space and making numerical computation

2



impossible. The discretization comprises M nodes connected by k ∈ N tubes of length

` = 10px and measured average radius a0,k.

veins of P. polycephalum

background

tube of length l = 10 px

node connecting tubes 

Details of the image Details of the discretization

FIG. S1. Schematic illustration of the discretization process of the P. polycephalum network

b. Computation of flow We model the peristaltic wave of contractions in P. poly-

cephalum by assigning an oscillating radius ak to each tube k: a2k(t) = a20,k+2a20,kε exp (i(ϕk − ωt)),
where ω denotes frequency and ε relative amplitude. The phases ϕk are chosen to obey

mass conservation,
∑

k a
2
0,k exp (iϕk) = 0. As shown previously [3] phases arranged spatially

by minimizing local phase differences agree with observed patterns.

For a network of tubes with equal radii, a0,k = a0, mass conservation is solved exactly by

discrete values for ϕk allowing for a standard Monte Carlo search to minimize local phase

differences [3]. With a hierarchical distribution of radii, however, ϕk are continuous and

we use a Metropolis Hastings with simulated annealing technique [4, 5]. The use of an

augmented Lagrangian allows mass conservation to be enforced without ill-conditioning the

random search [6].

The cross-sectional contractions generate a low Reynolds number flow (Re ∼ 0.1) that is

described by Poiseuille flow. The cross-sectional averaged longitudinal velocity along a tube

k connecting nodes i and j is then given by uij(z, t) = q0,i(t)/πa
2
ij(t)−(2z/aij(t))(∂aij(t)/∂t),

where q0,i(t) denotes the influx at the tube’s end determined by Kirchhoff’s circuit law, t

denotes time and z denotes the longitudinal coordinate. For the numerical calculations

3



we assume oscillation period T = 2π/ω = 2min [7], ε = 0.1, and molecular diffusivity

κ = 10−10m2/s.

II. FROM TAYLOR DISPERSION TO EFFECTIVE DISPERSION

The use of Taylors dispersion as expanded for contraction driven flow by Mercer and

Roberts [8], is valid for flows exhibiting low Reynolds number, and small contractions com-

pared to the characteristic width of the veins. The fluid flow in Physarum polycephalum has

been measured to exhibit a Poiseuille profile [9]. This is expected since the typical length

scale of contractions is about the size of the organism (a few millimeters) and thus very

large compared to the radius of the veins (a few microns). Observed flow characteristics of a

representative tube radius are a0 = 50µm, a flow velocity of u = 50µm/s, and the kinematic

viscosity of the cytoplasm ν = 6.4×10−3N.s/m2 [10], and result in a small Reynolds number

Re = 2ua0/ν ∼ 0.0008. These numbers justify the use of Taylor’s dispersion eq. (1) of the

main paper.

We compare now the full solution of the Taylor Dispersion and the Dispersion cloud

method to evaluate the effective dispersion. We perform the analysis over a test organism

discretized into about 1000 tubes. For each of these tubes, we compute how nutrients

disperse with the two methods. We show below in Fig. S2 an example for several initiation

sites in the network, similarly as in Fig. 2 a of the main paper. The two methods are

generally in good agreement. However, for small tubes that are near the border of the

network, the Dispersion Cloud method overestimates the dispersion, because of side effects

not taken into account by the method. In general these border tubes are thin and do not

impact so much averages weighted by the tube volumes. On the other hand, for central

large tubes, the Dispersion Cloud method slightly understimates the dispersion, because

convection in these areas is very fast.

For each of these tubes, we are thus able to evaluate the effective dispersion from the

slopes of the curves, similar to Fig. 2 a of the main paper. In the case of the full Taylor

Dispersion we evaluate the slope at the middle points between top and bottom within a

single period. Maps of the effective dispersion computed on each tube for this organism are

shown in Fig. S3. The effective dispersion maps, weighted by the size of the tubes, correlate

very well (0.9) between the Taylor dispersion and the Dispersion cloud.
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FIG. S2. Comparison of Taylor Dispersion and Dispersion Cloud approximation to compute the

dispersion of a cloud of particles from several initiation points in the test organism. The initiation

points are circled in light blue over the network map and associated with a graph showing the

radius squared of the dispersing cloud calculated with both methods. The graph circled in a grey

dashed line is that of Fig. 2 a of the main paper.
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FIG. S3. Comparison of Taylor Dispersion (a) and Dispersion Cloud approximation (b) to compute

effective dispersion on a trial organism.

The computation of the effective dispersion with the Taylor Dispersion algorithm (or with

a full Random Walk) takes several days on a single core, for the network of Fig. S3 (of about

1000 tubes). This estimate does not include the preliminary analysis to compute the phases

and the flow for the network (that is the same regardless of the method). The dispersion

cloud algorithm takes less than 25 seconds. Each of the codes is parallelizable on each tube

of the network, since the computation calculates the effective dispersion for each possible

starting edge.

III. ANALYSIS OF PRUNING NETWORKS

We include in this section extensive statistical analysis of the pruning network in the

main paper, together with statistical analysis and effective dispersion analysis for two new

individuals. The analysis of effective dispersion with respect to pruning and hierarchical

organization of the two individuals supports the finding that pruning increases dispersion

far more than hierarchical organization.

A. Main paper individual

In the table below we include statistical properties of the individual studied in the main

paper.
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Statistical property Original network Pruned evolution

Images (pruned tubes in

blue)

Number of tubes N 4406 6223

Number of vertices n 4163 5862

Link density 2N
n(n−1) 0.0005 0.0004

Average degree 2N
n 2.1 2.1

Number of connected
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B. Supplemental individual #1

a. Statistical properties In the table below we detail the statistical properties of another

individual, #1.

b. Hierarchical and topological analysis We study first a small individual. We find that

pruning increases the average effective dispersion by 8%, see Fig. S4. For the unpruned case

and the pruned cases, the hierarchical distribution has an impact over the average effective

dispersion that is smaller than 1%, see Fig. S5. The impact of pruning over this transport

network is much more important than the hierarchical organization.

C. Supplemental individual #2

a. Statistical properties In the table below we detail the statistical properties of another

individual, #2.

b. Hierarchical and topological analysis We study a large individual, comparable to

that in the main paper, but where pruning happens for lots of very small tubes. We find

that pruning increases the average effective dispersion by 24%, see Fig. S6. For the unpruned

case, the non-hierarchical individual has an average effective dispersion that is 9% larger than

the hierarchical individual. For the pruned case, the hierarchical distribution increases the

average effective dispersion by 6%, see Fig. S7. The impact of pruning over this transport

network is, overall, more important on a global scale than the hierarchical organization.
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Statistical property Original network Pruned evolution

Images (pruned tubes in

blue)

Number of tubes N 2077 2025

Number of vertices n 1671 1684

Link density 2N
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FIG. S4. a) Bright-field image of a P. polycephalum cut from a larger network (left) and the same

individual 87 contraction periods later (right). b) Maps of the root mean square flow velocity, and

c) effective dispersion, for the initial network (left) and the same individual 87 contraction periods

later (right).
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FIG. S5. Average effective dispersion as a function of distance to the center for unpruned (a) and

pruned (b) states (shaded areas mark standard deviations), for the same individual as in Fig S4.

The base dashed line represents the molecular diffusivity κ = 10−10m2/s. Note the difference in

scales. Blue and black curves represent data from hierarchical (ii) and non-hierarchical cases (i),

respectively. Insets are colored to show effective dispersion.
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