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Abstract

Genome architectures are likely shaped by species' ecologies, but genomes are rarely
discussed in ecological contexts. A major force in evolution is symbiosis, and a symbiotic
niche may shape a genome's size, gene order and gene content. The mycorrhizal sym-
biosis is ubiquitous and critical to the function of diverse ecosystems. Although there are
tens of thousands of mycorrhizal fungi, there are no general principles defining the
genetic architectures of these fungi. General principles may not exist, perhaps because
of the multiple, independent origins of the symbiosis. But research with pathogenic
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fungi suggests general principles at work in the evolution of pathogen genomes, and to
enable a more holistic understanding of the forces shaping genomes of mutualists, we
focus on the genus Amanita and the role of ecology in genome evolution. Amanita is an
emerging model for the ecology and evolution of symbiosis, and to date, our laboratory
has sequenced the genomes of six species with diverse niches. We describe the natural
histories of these species and current research on genomics. We offer novel analyses
targeting two questions: did the evolution of the ectomycorrhizal symbiosis facilitate
an adaptive radiation of symbiotic Amanita and how are the genomes of asymbiotic
fungi different from the derived genomes of ectomycorrhizal fungi? We also discuss
the role transposable elements may have had in generating genomic variation and a
potential link between transposable element proliferation and patterns of speciation.
Our descriptions of the genus identify as yet unexplored questions connecting geno-
mics to the ecology of species' ranges and range expansions.

1. INTRODUCTION

How does symbiosis shape genetic architectures? In this chapter, we

consider symbiosis as a close physical association between two individuals of

different species and mutualism as any interaction benefitting both individ-

uals. Symbioses may also be parasitisms and mutualisms may or may not be

symbioses.

Mutualisms are often asymbiotic, for example, plants and pollinators or

insects associated in Müllerian mimicry. Asymbiotic mutualisms are rarely

considered as an explicit force shaping the genetic architectures of mutual-

ists. However, floral morphology is critical to pollination and clearly evolves

in response to pollinator choice (Venail, Dell’Olivo, & Kuhlemeier, 2010),

and Müllerian mimics evolve to look like each other. It seems likely

asymbiotic mutualisms will influence the spectrum of genes and their

arrangement in a genome (Heliconius Genome Consortium, 2012). Fungi

seem more often involved in symbiotic mutualisms, and we will not con-

sider asymbiotic associations further.

Research on the genetic architectures of symbionts has focused on bac-

teria (McCutcheon & Moran, 2012; Moran, 1996; Moran, McLaughlin, &

Sorek, 2009; Moran & Wernegreen, 2000), but how these data translate to

fungi is unclear. Bacteria enabled paradigms defining the evolution of endo-

symbiosis (Martin & Schnarrenberger, 1997; Tamas et al., 2002), for exam-

ple, endosymbiotic bacteria lose many of the genes found in closely related

asymbiotic lineages and have reduced genome sizes (Mira, Ochman, &

Moran, 2001; van Ham et al., 2003). However, fungal symbioses often
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involve individuals that live both inside and outside of organisms. In mycor-

rhizal symbioses, some parts of the fungus are physically associated with a

plant, while others are in soil and exposed. The evolutionary trajectory of

an organism that maintains itself outside of a host may be very different from

the trajectory of an endosymbiont (Law & Lewis, 1983; Zoller & Lutzoni,

2003), and in contrast to an endosymbiotic bacterium, an ectosymbiotic fun-

gus may maintain the genes necessary for independent growth. The dynam-

ics of genome size evolution may also be quite different, because

mycorrhizal symbioses are not vertically transmitted (Smith & Read, 2010).

The ectomycorrhizal (ECM) symbiosis has multiple, independent ori-

gins ( James et al., 2006), and because the ancestor of these symbionts was

a saprotroph, extant ECM species represent different gains of the symbiotic

niche ( James et al., 2006; Matheny et al., 2006). Comparative genomics of

published ECM genomes identifies coarse genomic differences between

saprotrophic and biotrophic fungi (Martin et al., 2008, 2010; Martin &

Selosse, 2008; Nagendran, Hallen-Adams, Paper, Aslam, & Walton,

2009; Plett & Martin, 2011), and intriguing patterns of evolution are

suggested from the two genomes published to date: Laccaria bicolor and Tuber

melanosporum. Both genomes are characterized by elevated transposable ele-

ment (TE) content (Martin et al., 2008, 2010). The basidiomycete L. bicolor

has a total genome size of 61 MB and an estimated TE content around

20–25%, while the ascomycete T. melanosporum genome is of 125 MB

and reaches to as much as 60% TEs. However, the gene content in these

two species is radically different. While L. bicolor encodes around 23,000

genes, many more than most free-living basidiomycetes, T. melanosporum

only harbours about 7500 genes, which only barely exceeds the numbers

found in a larger yeast genome ( Jones et al., 2004). Only 19% of

T. melanosporum genes are part of larger gene families, compared to 55%

of the genes found in L. bicolor (Martin et al., 2010), revealing very different

genome architectures that both enable the same kind of symbiosis. But there

are also commonalities, including the loss of plant cell wall degrading

enzymes (PCWDEs) and expansions in gene families involved in signalling

(Veneault-Fourrey & Martin, 2011).

Parasitisms also shape the genetic architectures of fungi; although in eco-

logical contexts disease may seem very different from mutualism, the inter-

actions may share genetic pathways, for example, oomycete pathogens and

arbuscular mycorrhizal fungi use a signal expressed from the same plant gene

to colonize plants (Wang et al., 2012). Parasitisms and mutualisms may

impose common selective forces on genomes, perhaps including changes

237A Case Study: The Amanitas



in genome size, but even when selective forces diverge the mechanisms

enabling change may be similar, for example, changes in gene family copy

number or the proportions of TEs.

Like L. bicolor and T. melanosporum, many plant pathogens maintain

expanded genomes densely populated by TEs (Grandaubert, Balesdent, &

Rouxel, 2014). Plant pathogens show differing patterns of expansions and

contractions in the gene families involved in pathogenicity, including effec-

tors and PCWDEs (Raffaele & Kamoun, 2012). Although the direct impact

of TEs on these genomes is only discussed in a few cases, their effects are

striking and include accelerated evolutionary rates of effectors caused by

repeat-induced point mutation of nearby TEs (Grandaubert et al., 2014;

Rouxel et al., 2011) and a fusion of an effector family with a TE resulting

in joint proliferation (Sacristán et al., 2009). Moreover, simulations suggest

rearrangements mediated by TEs may contribute towards the compartmen-

talization of genomes into slower- and faster-evolving regions and so aid the

generation of genomic plasticity underpinning adaptation to new environ-

ments (Crombach & Hogeweg, 2007).

TEs appear as a common theme in research on the architectures of fungal

genomes, but the discovery of TEs and their evolutionary potential is not

restricted to the fungi; the impact of TEs on genomes is widespread and their

significance as a mechanism generating heritable variation is widely appre-

ciated (Kidwell & Lisch, 2001; Levin & Moran, 2011; Raffaele & Kamoun,

2012; Werren, 2011). TEs can generate large amounts of genetic diversity,

for example, by facilitating chromosomal rearrangements, and besides their

immediate consequences on gene content and gene order, the

rearrangements mediated by TEs may also play a role in reproductive isola-

tion, accelerating the process of speciation (B€ohne, Brunet, Galiana-

Arnoux, Schultheis, & Volff, 2008; Oliver & Greene, 2009, 2011, 2012;

Oliver, McComb, & Greene, 2013; Zeh, Zeh, & Ishida, 2009).

To begin dissecting the variety of mechanisms shaping the genomes of

ECM fungi, and maybe identify causal changes, comparisons of more closely

related species are necessary. There are great evolutionary distances among

species with sequenced genomes, and identifying the causes of genomic dif-

ferences is difficult: genomic differences may be correlated with differences

in ecological niche but may be caused by the unique evolutionary trajecto-

ries taken by distantly related species.

The Amanita are a novel model for understanding the changes in genetic archi-

tecture associated with an evolution of a mutualistic symbiosis: In this genus, the

evolution of the ECM symbiosis occurred once, and saprotrophic Amanita
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form a strongly supported clade basal to a monophyletic clade of ECM spe-

cies (Wolfe, Tulloss, & Pringle, 2012; Fig. 8.1). Amanita houses over 500

described species, and the majority are ECM. Approximately 30 species

ofAmanita appear to be asymbiotic. But the full diversity of asymbioticAma-

nita may be unknown; at least a handful of species remain undescribed (e.g.

“sp-C13”, http://www.amanitaceae.org/?Amanita+sp-C13), while others

are known only from a single collection. Asymbiotic Amanita are often

found in Africa, Asia or South America, at sites far away from traditional cen-

tres of mycology.

The single origin of symbiosis and its species richness render the genus

Amanita a great model system to investigate the genomic changes around

the evolution of symbiosis and the subsequent evolutionary trajectories of

individual ECM species at a finer scale. We have sequenced the genomes

of five Amanita and an out-group species (Fig. 8.1 and Table 8.1). We chose

to sequence three symbiotic Amanita (A. brunnescens, A. polypyramis and

A. muscaria var. guessowii, sampling from each of the major ECM clades)

and two asymbiotic Amanita (the closely related A. thiersii and A. inopinata).

The saprotrophic fungus Volvariella volvacea was sequenced as an out-group.

To facilitate thinking about the Amanita as a model, we briefly describe

the natural histories of sequenced species and then describe current analyses

of genomes, focusing on TEs. Species descriptions focus on ecology; useful

information about morphology and taxonomy are provided by both

mushroomexpert.com and amanitaceae.org. At least three salient questions

emerge from the descriptions of species and their genomes, and we concen-

trate on two: does symbiosis influence the pace of speciation in ECM

Amanita, and are TEs causing apparent changes in synteny among the

different species? We relate the second question to patterns of speciation.

We conclude by briefly discussing the third, unanswered question of

whether or how genome evolution may enable range expansions.

2. THE FUNGI AND THEIR GENOMES

2.1. The out-group Volvariella volvacea, an edible
mushroom and decomposer of agricultural waste

An extensive literature on V. volvacea focuses on its use as a crop (Bao et al.,

2013; Chang, 1977; Date & Mizuno, 1997). The fungus is cultivated

throughout Asia, and especially in China, where it has been grown since

the eighteenth century. Protocols to grow the mushroom were developed

at least in part by Buddhist monks (Chang, 1977). The mushrooms are
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Figure 8.1 Phylogeny of the genus Amanita, based on the analysis of Wolfe, Tulloss,
et al. (2012). Branch lengths were recalculated using the nucLSU gene and a relaxed
molecular clock model in BEAST (Drummond & Rambaut, 2007). Rates of diversification
were estimated with MEDUSA (Harmon, Weir, Brock, Glor, & Challenger, 2008) on a sam-
ple of 1000 trees from the BEAST posterior distribution, and inferred shifts recovered in
>50% of trees are highlighted. Arrows mark the species for which genomic data are
available.
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Table 8.1 Basic statistics of the assemblies of sequenced Amanita genomes

Species
Sequencing
centre

Assembly
size (bp)

N50
(kB)

CEGMA
genes (%)

CEGMA
redundancy

TE (assembled)
(%)

TE (coverage
corrected) (%)

A. brunnescens Harvard 57,556,770 11 94.35 1.81 17.9 36.4

A. polypyramis Harvard 23,557,560 64 95.56 1.28 11.6 59.6

A. muscaria guess. JGI 40,699,759 17 92.34 1.10 8.9 21.6

A. thiersii JGI 33,689,220 77 95.97 1.11 26.4 36.6

A. inopinata Harvard 22,122,871 156 95.97 1.11 4.8 8.9

V. volvacea Harvard 52,426,718 55 95.56 1.57 4.6 5.2

Percentages of CEGMA (Parra, Bradnam, &Korf, 2007) genes recovered in each assembly were used as estimates of gene space completeness. CEGMA redundancy is the
average copy number of single copy CEGMA genes detected in each genome. Assembly size is given as an approximation to genome size but may be a poor estimator.
CEGMA redundancy and the proportion of unassembled TEs (as reflected by the difference between corrected and assembled TE content; Hess et al., in review)may give
an indication of how assembly size related to true genome size. Higher redundancy values mean the true genome size is smaller than assembly size, while a high
unassembled portion of TEs means that true genome size is larger than assembly size.



considered a health food. The species is relatively inefficient at converting

substrates to mushrooms, with yields described as between 10% and 13%

when the fungus is grown on rice “straw” (plant stalks leftover when rice

is harvested) and 30–40% when grown on cotton wastes, for example,

old clothes (Date &Mizuno, 1997). The fungus is tropical and requires tem-

peratures greater than 25 �C to fruit but is introduced to North America

where it can be found in woodchips, compost piles, greenhouses and gardens

(Kuo, 2011). The mycelia of V. volvacea have no clamp connections. The

species appears to be homothallic and capable of mating with itself (Bao

et al., 2013).

2.2. Amanita thiersii, a fungus of lawns undergoing a range
expansion

An extensive account of the natural history ofA. thiersii is provided byWolfe,

Kuo, and Pringle (2012). The native range of the fungus may or may not

include North America; although it was originally described from Texas in

1952, over the last decades,A. thiersii has moved fromNorth to southern Illi-

nois (Kuo, 2013a), and the fungus may be an invasive species originally intro-

duced to Texas from an as yet unidentified home range. Alternatively, the

fungus may be native and moving in response to environmental change.

Recently, the fungus was found near Baltimore, MD, on the East Coast of

theUnited States (www.mushroomobserver.org; Tulloss personal communi-

cation). Mushrooms are generally found in lawns, where the species decom-

poses grass litter. Although A. thiersii is not mycorrhizal, it stimulates plant

growth (Wolfe, Kuo, et al., 2012), perhaps because decomposition releases

limiting nutrients to soil. Nothing is known about the mating system of the

fungus, but the genetic diversity of populations across North America is low.

2.3. Amanita inopinata, an Amanita known only from
introduced ranges

The “unexpected” Amanita is an enigmatic fungus originally described from

scattered localities in the southeast corner of England (Reid, 1987). After the

description was published, a New Zealand mycologist recognized it as a

rarely collected species found in both the North and South Islands

(Ridley, 2000). The fungus is considered an introduction to both England

and NewZealand and has also appeared in the Netherlands (Bas, 2001). Per-

haps because the fungus is an Amanita and Amanita is typically an ECM

genus, careful notes of the trees around collections are available (FRDBI,

2013; Ridley, 2000). Many are not hosts of ECM fungi, for example,
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Chamaecyparis lawsoniana and Taxus baccata, and the fungus is currently

assumed to be asymbiotic (Kibby, 2005; Wolfe, Tulloss, et al., 2012). How-

ever, molecular probes testing for a specific cellulose decomposition path-

way found no evidence of these genes in A. inopinata, and its ecological

niche remains unknown (Wolfe, Tulloss, et al., 2012).

2.4. Amanita muscaria, a species complex of ECM fungi with
different ecologies

A. muscaria is the charismatic, widely recognized red-and-white-spotted

mushroom of fairy tales and video games. However, it is very clearly a spe-

cies complex of cryptic genetic species (Geml, Laursen, O’Neill,

Nusbaum, & Taylor, 2006; Geml, Tulloss, Laursen, Sazanova, & Taylor,

2008), and these species look different, have different ranges and associate

with different hosts. For example, the European mushroom (which keeps

the name A. muscaria) is red with white spots and is often associated with

oak, while the eastern North American mushroom (A. muscaria var.

guessowii) is yellow with white spots and is primarily associated with conifers.

A more southern North American mushroom (A. muscaria var. persicina) has

a peach coloured cap and associates with both oak and pine. The genome

sequenced to date is an isolate of A. muscaria var. guessowii collected in Penn-

sylvania; however, as additional genomes are sequenced, the complex will

provide an opportunity to compare the genomes of very closely related

genetic species with different habitats. For simplicity sake, we discuss the

sequenced genome as “A. muscaria” and not “A. muscaria var. guessowii”.

2.5. Amanita polypyramis, an ECM fungus
Relatively little is known about the natural history of A. polypyramis. The

species is found in the United States from New Jersey south to Texas and

Florida and in Mexico and Central America (Kuo, 2013b), including in

the Guanacaste Conservation Area of Costa Rica (Tulloss, 2013). In contrast

to A. muscaria but like V. volvacea, A. polypyramis grows in the tropics. The

fungus associates with oaks and perhaps pines as well. Mushrooms are very

large, with caps reaching to 20 cm across.

2.6. Amanita brunnescens, another ECM fungus
about which relatively little is known

The species is found in eastern North America and associates with various

hardwoods and conifers. The mushrooms are very common.
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2.7. Genomics to date, and comparisons to L. bicolor
and T. melanosporum

In the Amanita, decomposition pathways are lost by ECM species

(Nagendran et al., 2009; Wolfe, Tulloss, et al., 2012). Preliminary analyses

of the A. muscaria and A. thiersii genomes show a large reduction in many

carbohydrate active enzyme (CAZyme) families inA. muscaria. The genome

of A. muscaria encodes 279 CAZymes, while A. thiersii encodes 370. Losses

are generally concentrated in the families involved in the degradation of

plant cell wall material (Chaib de Mares, 2013). This pattern seems to be

a common feature of crown group ECM species and a basic strategy used

by biotrophic fungi to escape detection by the plant immune system

(Veneault-Fourrey & Martin, 2011; MGI http://mycor.nancy.inra.fr/

IMGC/MycoGenomes/).

Like L. bicolor, A. muscaria has an amplified genome encoding 18,153

genes, almost twice as many genes as A. thiersii, which houses 10,354

(http://genome.jgi-psf.org/Amamu1/Amamu1.info.html; http://genome.

jgi.doe.gov/Amath1/Amath1.info.html). The types of amplified gene fam-

ilies show close similarities to gene families amplified in L. bicolor: Among the

five largest gene clusters in A. muscaria, two contain protein–protein inter-

action domains (e.g. NACHT and WD40), while another two appear to be

tyrosine kinases (Martin et al., 2008; http://genome.jgi-psf.org/clustering/

pages/cluster/clusters.jsf?runId¼1898&organism¼Amamu1). Analysis of

the secretome reveals an overall decrease in numbers of secreted proteins

in A. muscaria compared to A. thiersii, but with a clear shift towards a higher

percentage of small secreted proteins in A. muscaria (Chaib de Mares, 2013).

TE distributions across the six sequenced genomes show no simple pat-

tern with respect to ecological niche, although we find evidence for changes

in TE dynamics following the evolution of the ECM symbiosis (Hess et al.,

in review). Abundant numbers of TEs are found in two of the three ECM

species (36% genomic content in A. brunnescens and 59% in A. polypyramis),

as well as the asymbiotic species A. thiersii (37%). The third mycorrhizal spe-

cies, A. muscaria, houses a moderate proportion of TEs (21%), while both

A. inopinata and V. volvacea possess few TEs (less than 10% in both cases).

TE repertoires across the Amanita are dominated by RNA-based elements

from the Gypsy, Copia and LINE superfamilies, and together, these make

up over 80% of TE diversity (Hess et al., in review). Phylogenetic analysis

of these three most abundant retrotransposon superfamilies mirrors the pat-

terns found in assemblies and reveals large numbers of recently diverged ele-

ments in the three TE-rich species. While A. thiersii houses amplifications of
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all three superfamilies, amplifications in A. brunnescens and A. polypyramis are

concentrated in the LINE and Gypsy superfamilies but are especially prom-

inent among LINE elements where 84% of TEs are from either

A. brunnescens or A. polypyramis. Although A. muscaria amplifications are

smaller than those found in A. brunnescens, A. polypyramis or A. thiersii, they

outnumber those found in A. inopinata and V. volvacea.

Despite the lack of a simple pattern of elevated TE content in ECM

genomes as compared to asymbiotic genomes, the presence of TE amplifica-

tions among ECM lineages suggests the evolution of the ECM lineages was

accompanied by a period of either increased rates of TEproliferation or lower

rates of TE removal, arguablywith the same potential for TE-mediated chro-

mosomal rearrangements, duplications and deletions. The patterns of TE

content evolution in A. thiersii appear different to those in the ECM species.

Individual families are amplified among the different ECM species, but all

three types of retrotransposons are amplifiedwithinA. thiersii, suggesting that

different mechanisms are at work to elevate TE content.

3. ECOLOGICAL GENOMICS OF ASYMBIOTIC
AND ECM AMANITA SPECIES

3.1. Does symbiosis influence the pace of speciation
in ECM Amanita?

Symbioses may facilitate evolutionary radiations by enabling new ecological

opportunities, and the literature offers many examples from different

domains and kingdoms. Often, mutualisms are also correlated with increased

rates of speciation, for example, pollinators appear to drive plant diversifica-

tion ( Johnson, 2010), a mutualism with anemones may have triggered the

adaptive radiation of clownfishes (Litsios et al., 2012), and microbes may

mediate the diversification of phytophagous insects ( Janson, Stireman,

Singer, & Abbot, 2008).

However, modern theory offers conflicting opinions on the role of

mutualism in speciation. Early theory suggested stochasticity in geographi-

cally isolated populations of mutualists would spur diversification, as forces

like genetic drift caused isolated populations to diverge (Kiester, Lande, &

Schemske, 1984). The geographic mosaic theory of coevolution

(Thompson, 1999) also suggests that mutualisms can promote speciation

when interacting species are divided into metapopulations. In contrast, a

more recent model of two coevolving species suggests that mutualisms

can slow diversification when phenotypes “match”, for example, when
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an aspect of a pollinator’s shape matches the shape of a pollinated flower

(Yoder & Nuismer, 2010). While plants and ECM fungi often grow as

metapopulations, it is not clear what phenotype matching would mean in

these symbioses.

It seems logical to ask whether the transition to symbiosis enabled an

adaptive radiation of ECM Amanita species. Ryberg and Matheny (2012)

compared diversification rates and times among genera of ECM in the

Agaricales and found constant but different rates of diversification across

all clades: the Amanita possessed intermediate rates of diversification. How-

ever, their analysis did not include asymbiotic species of the genus and does

not explicitly test the hypothesis of differences in the rates of diversification

between asymbiotic and symbiotic Amanita.

To test for changes in rates of diversification after the evolution of the

ECM niche in Amanita, we used phylogenetic methods to infer a linearized

phylogenetic tree and models of rate diversification. We collected nuclear

large subunit ribosomal DNA (nucLSU) sequences from the 108 species

analysed in Wolfe, Tulloss, et al. (2012), realigned them using PRANK

(L€oytynoja & Goldman, 2008) and manually removed regions of uncer-

tainty, resulting in a 1598 bp alignment. We then ran BEAST v.1.75

(Drummond & Rambaut, 2007) under the GTR+G model with four dis-

crete rate categories and a lognormal uncorrelated relaxed molecular clock

to estimate rates of evolution for the nucLSU alignment on the fixed species

tree fromWolfe, Tulloss, et al. (2012). The results of three parallel runs were

combined after discarding 10% of the estimates as burn-in. A random sample

of 1000 trees from the combined posterior set of trees served as the input data

for MEDUSA (Harmon et al., 2008). MEDUSA fits a series of birth–death

processes, modelling species diversification by using an increasing number of

distinct rate partitions until the model improvement becomes insignificant.

A summary of the MEDUSA results is shown in Fig. 8.1.

We recover two rate shifts that are well represented among the posterior

trees; both are within ECM clades, one in subgenus Lepidella and the other

in subgenus Amanita. In both cases, the estimated mean diversification rates

are three times as fast as the background rate, although the estimates also have

large standard deviations. Because we did not calibrate the molecular clock

analysis, the units of the diversification rates are arbitrary, but rates can be

compared to each other. The respective rate shifts are found in 66% and

69% of the posterior sample.

The interpretation of our results is complicated by the large confidence

intervals on estimated node heights in the backbone of the tree. Large con-

fidence intervals will affect diversification rate estimates in deeper clades and
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our ability to test for a shift in diversification rate directly after the evolution

of the ECM niche. Increasing the size of our dataset (adding additional loci)

might narrow confidence intervals by improving branch length estimates,

although rates on long branches are generally difficult to estimate

(Schwartz & Mueller, 2010).

The accurate estimation of diversification rates also depends on taxon

sampling; a general assumption of most methods developed for this purpose

is a completely sampled phylogeny (e.g. Heath, Hedtke, & Hillis, 2008;

Pybus & Harvey, 2000). If species sampling is even and so, by corollary,

all deep lineages have been sampled, any new species added will likely be

near the tips of the tree. The underrepresentation of nodes with shallow

branch lengths in “evenly incompletely” sampled trees may lead to under-

estimation of diversification rates near the tips of the tree (Heath et al., 2008;

Pybus & Harvey, 2000). Biases in unevenly sampled phylogenies are obvi-

ously more severe and would incorrectly increase or decrease rates in subsets

of the tree.

Given the relative overrepresentation of asymbiotic Amanita in our phy-

logeny (slightly less than half of the described species, compared to about a

fifth of the ECM species), we may be underestimating relative rates of diver-

sification for the ECM species. We are also likely to be underestimating

diversification rates near the tips of the tree, due to the relatively sparse sam-

ple of our dataset. A more comprehensive analysis including additional spe-

cies and a better understanding of biogeography and natural history of the

genus will be key to detangling the biases that may complicate our analysis.

Nevertheless, there is at least some support for an increase in diversification

rates following the evolution of the ECM symbiosis, and the large number of

extant ECM Amanita proves that these species have been very successful.

The genus Amanita is not the only ECM clade proposed to have under-

gone an adaptive radiation, and multiple other clades also contain specious

ECM lineages (Ryberg &Matheny, 2012; Smith &Read, 2010). Two com-

peting hypotheses are proposed to explain potential radiations: the “dual

origins” hypothesis, in which ECM species are proposed to have radiated

at the same time as the diversifications of major ECM plant hosts (with

the Pinaceae during the Jurassic and the Angiosperms during the Cretaceous

(Halling, 2001)), and the “convergent radiation” hypothesis (Bruns, Szaro,

Gardes, & Cullings, 1998), in which ECM lineages are proposed to have

radiated more recently, as ECM plant communities expanded ranges into

cooling climates. Ryberg and Matheny’s (2012) study offers support for

the second hypothesis but with the caveat that radiations may not be specific

to ECM clades and may therefore be unrelated to ECM niche (Bruns et al.,
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1998; Ryberg & Matheny, 2012). Our results suggest that ECM clades of

Amanita have higher rates of diversification than asymbiotic clades of

Amanita, and give some weight to the idea that radiations of ECM lineages

were indeed adaptive and facilitated by symbiosis.

3.2. Does symbiosis reshape the ECM genome?
A variety of mutational mechanisms shape genes and genomes. In addition to

single nucleotide substitutions and short insertions or deletions in protein-

coding genes and regulatory regions, larger-scale events may involve dupli-

cations, losses or rearrangements. The size of the genomic regions involved

in these events will vary widely and may encompass anything from segments

of a single gene up to an entire genome but in all cases will provide evolu-

tionary novelty (Kondrashov, 2012; Ramos & Ferrier, 2012; Zhang, 2003).

The mechanisms generating duplications, deletions and chromosomal

rearrangements include nonallelic homologous recombination, involving

either neighbouring stretches ofDNAon the same chromosome or dispersed

genomic regions, and nonhomologous end joining of double-strand breaks

(Lynch, 2007; Ramos & Ferrier, 2012). TEs play a critical role in facilitating

nonhomologous recombination events, by providing dispersed stretches of

identical sequence that can act as seeds for recombination (Fiston-Lavier,

Anxolabéhère, & Quesneville, 2007; Ponce, Martinsen, Vicente, & Hartl,

2012; Ramos & Ferrier, 2012); Small sequence repeats have been shown

to be sites of chromosomal rearrangement in fungi (Ohmet al., 2012). In the-

ory, the younger the TE family and the more abundant it is across the

genome, the higher the probability it will facilitate a recombination event.

An analysis of TEs found within a genome and the extent of gene order con-

servation, or “synteny”, among related genomesmay suggest (i) the extent to

which chromosomal rearrangements mediated by TEs have influenced the

evolution of gene content within the clade and (ii) whether and when TE

dispersal within the genome has shaped synteny; if TEs influence chromo-

somal rearrangements, they may colocalize with synteny breakpoints.

Because gene content is very different between A. thiersii and A.

muscaria (Chaib de Mares, 2013; J. Hess et al., unpublished; Wolfe,

Tulloss, et al., 2012) and because TEs are found in abundance in two of

the three ECM genomes (Table 8.1; Hess et al., in review), we designed

an analysis to explore synteny conservation between our canonical sapro-

troph A. thiersii, the closely related A. inopinata and the ECM Amanita

genomes.
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We first identified A. thiersii scaffolds containing the key extracellular

cellulases of CAZy families GH6 and GH7 (www.cazy.org), because the loss

of PCWDEs appears to have been an important event in the early evolution

of the Amanita ECM symbiosis (Wolfe, Tulloss, et al., 2012). Draft genome

assemblies were aligned using PROmer from the MUMmer package (Kurtz

et al., 2004) and filtered for matches to the three A. thiersii target scaffolds.

Matching segments shorter than 1000 bpwere removed, because we are pri-

marily interested in visualizing long-range synteny of gene-sized segments.

Adjacent regions were combined if there was no intervening segment from a

different scaffold, internal duplication or change in directionality of

the match.

Figure 8.2 illustrates the conservation of synteny between the A. thiersii

scaffolds 2, 4 and 18, containing the predicted GH6 (scaffold 2) and the two

predicted GH7 (scaffolds 4 and 18) genes, and homologous scaffolds in other

Amanita genomes. Comparisons reveal different amounts of synteny conser-

vation. As expected, A. inopinata, the closest relative (Fig. 8.1), shows the

strongest amount of synteny conservation. All threeA. thiersii scaffolds house

long segments in synteny with scaffolds inA. inopinata, and two of these seg-

ments span cellulase loci (see radial bars, Fig. 8.2). Nevertheless, we find evi-

dence for chromosomal rearrangements: The third cellulase locus, on

scaffold 2 (the first A. thiersii scaffold, as you move in a clockwise direction),

appears to be adjacent to a large chromosomal inversion and missing from

A. inopinata, and the locus on scaffold 4 (the second A. thiersii scaffold),

which contains a fragmented GH7 gene, consists of a complex segmental

duplication. The different parts of scaffold 4 are superimposed onto the same

scaffold in A. inopinata. Despite the conserved syntenic segments spanning

two of the three target cellulases, all three enzymes are absent from

A. inopinata and the scaffolds are not alignable in these regions, suggesting

gene loss was independent of chromosomal rearrangements. As discussed

previously, the ecological niche of A. inopinata remains undefined, and

although it appears asymbiotic, all of the key PCWDEs are missing

(Wolfe, Tulloss, et al., 2012).

The three ECM species display variable amounts of synteny conserva-

tion, with A. muscaria showing long contiguous matches to A. thiersii scaf-

folds, followed by A. polypyramis and finally A. brunnescens, which displays

the largest breakdown in synteny. None of the cellulase loci in are syntenic.

Phylogenetically, all three ECM species are equally distant to A. thiersii (cf.

Fig. 8.1), raising questions as to what might cause differences in observed

patterns of conservation.
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The full interpretation of our data will first require a brief discussion of

technical issues. The A. muscaria genome was sequenced by the US DOE

Joint Genome Institute (http://genome.jgi-psf.org/Amamu1/Amamu1.

home.html) using multiple Illumina libraries, including a 3.5 kb mate pair

library, while the A. brunnescens, A. polypyramis and A. inopinata genomes

Figure 8.2 Conservation of synteny between the Amanita thiersii scaffolds containing
key cellulases (GH6 and GH7), one on each scaffold, and matching scaffolds in other
Amanita species. A. thiersii scaffolds are numbered and shown in black, and for the pur-
pose of visualization, they are cropped to a total length of 100 kb surrounding the cel-
lulase genes, the positions of which are indicated by the radial bars. Matching syntenic
scaffolds are grey and cropped to the aligned positions plus a buffer of 10 kb on either
side, if available. The line graph on the outer ring indicates TE density per 1000 bp win-
dow at the equivalent genomic coordinates. Asterisks mark the sites of potential
TE-mediated synteny breakpoints.
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were assembled from a single 0.3 kb paired end library. We expect the

A. muscaria assembly to be of higher contiguity than the other assemblies

because repeat regions will have been more easily resolved. Nevertheless,

the A. inopinata, A. polypyramis and A. brunnescens assemblies are directly

comparable and prove that assembly contiguity and synteny conservation

are not strictly determined by the sequencing approach.

Relative TE abundance and distribution may also explain the degree of

synteny conservation among the different ECM species. Among the ECM

species, the A. muscaria genome houses the lowest proportion of TEs

(Table 8.1). Technically, A. polypyramis houses a much larger proportion

of TEs than A. brunnescens, but the higher assembly contiguity in

A. polypyramis (N50 of 61 kb, compared to 11 kb in A. brunnescens;

Table 8.1) suggests TEs are concentrated outside of gene-rich regions and

may therefore be less of an influence on our predominantly genic target scaf-

folds. The A. brunnescens assembly is much more fragmented than the

A. polypyramis assembly; the fragmentation may be caused by a more ran-

domly distributed population of TEs. TEs and other repeated regions fre-

quently form breakpoints in genome assemblies (Alkan, Sajjadian, &

Eichler, 2011). The pattern of synteny conservation among ECM species

may reflect positive relationships between the abundance of TEs, their dis-

tribution in a genome and synteny degradation.

Additional support for an influence of TEs on the degradation of synteny

conservation is seen in the localization of TE-dense regions near synteny

breakpoints (asterisks, Fig. 8.2). However, the many small scaffolds in the

A. brunnescensmay also reflect “interruptions” caused by repeats, rather than

chromosomal rearrangements.

3.3. Conclusions
Emerging theory explicitly connects the questions we have explored:

advances in genome sequencing and comparative genomics are enabling

mechanistic frameworks synthesizingmolecular patterns, including chromo-

somal rearrangements, with evolutionary phenomena, for example, adaptive

radiations (B€ohne et al., 2008; Jurka, Bao, & Kojima, 2011; Oliver et al.,

2013; Oliver & Greene, 2009, 2011, 2012; Zeh et al., 2009). TEs are central

to the new ideas proposed to explain adaptive radiations.

Adaptive radiations are defined by evolutionary innovation and

increased rates of speciation, and TEs may facilitate both processes. Active

transposition and ectopic recombination between young TE copies reshuffle
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the functional content of a genome. Domestication or “exaptation” of TE

sequences and changes in gene regulation in the neighbourhood of TEs may

also influence functional variation. An exhaustive list of examples and their

evolutionary significance is found in B€ohne et al. (2008), Oliver and Greene

(2009, 2011, 2012) and Oliver et al. (2013). Moreover, the karyotypic var-

iation resulting from chromosomal rearrangements can create reproductive

barriers and cause reduced recombination and gene flow between chromo-

somal variants, accelerating the path to speciation (B€ohne et al., 2008;

Rieseberg, 2001). These ideas are encapsulated by the “TE-Thrust” model

(Oliver & Greene, 2009, 2011, 2012), which proposes that lineages with

large quantities of young TEs may be especially prone to speciation.

Based on our tentative evidence for an adaptive radiation following the

evolution of the ECM symbiosis and our knowledge of genome architecture

evolution in the Amanita, we can begin to ask whether and how TEs shaped

the success of the ECM lineage. Two of the three ECM genomes we

sequenced, A. brunnescens and A. polypyramis (Fig. 8.1), are rich in TEs,

and the presence of closely related TE families in A. polypyramis and

A. muscaria suggests a period of increased TE activity early in the ECM lin-

eage (Hess et al., in review). Increased TE content, especially in

A. brunnescens, and less so in A. polypyramis, coincides with a breakdown

in long-range synteny (Fig. 8.2), suggesting that these ECM genomes

may have undergone chromosomal rearrangements. The ECM fungus

A. brunnescens falls within a lineage of increased speciation rates, as deter-

mined by our MEDUSA analysis (Fig. 8.1), while A. polypyramis and

A. muscaria do not. Aggregate evidence strengthens the notion of a link

between increased rates of speciation and changes in genome architecture.

The TE-Thrust model is focused on the age and abundance of TE fam-

ilies, but not on their distribution within the genome; on this point, the

Amanitamay provide a novel perspective. Our A. polypyramis results suggest

that despite a high TE content, genomic rearrangements are less than in a

species with lower TE content,A. brunnescens, perhaps because TE insertions

are concentrated in regions without genes. A more nuanced model of adap-

tive radiations and TEs might consider patterns of TE distributions within

genomes as an additional variable to explain the relationships between

TEs and speciation rates.

Nonetheless, whether or not TEs influenced the radiation of ECM

Amanita remains to be determined. Genomes from additional species,

long-range sequencing libraries collected to improve existing assemblies

and the sequencing of more individuals from different populations of already

sequenced species may distinguish the potential influence of natural
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selection from stochasticity and distinguish between TE amplification as an

active driver of speciation and patterns of TE content as a by-product of

population genetics and demographic histories (Lynch, 2007). The Amanita

belong to a charismatic genus, but even so, we also have remarkably little

knowledge of the mating strategies, life cycles and demographic histories

of many species. As we learnmore about the genus, disentangling the various

forces shaping speciation will be an ever more exciting and fruitful field of

inquiry.

4. UNANSWERED QUESTIONS: RANGE EXPANSIONS
AND GENOMIC ARCHITECTURES

An obvious feature of the natural histories of Amanita is range expan-

sion; A. thiersii is moving north from Texas, while A. inopinata and

A. muscaria (Vellinga, Wolfe, et al., 2009) seem to be establishing on several

continents at once. In New Zealand, A. muscaria is invading in association

with invasive pines (Dickie, Bolstridge, Cooper, & Peltzer, 2010). Other

unsequenced Amanita are also invading novel habitats, for example, the

ECM A. phalloides in California (Pringle, Adams, Cross, & Bruns, 2009).

Although invasions appear as idiosyncratic phenomena, relatively little is

known about the genomes of invasive species, and research on the ecological

genomics of invasions may provide novel tools and discoveries (Suarez &

Tsutsui, 2008). The genus Amanita is unique because it encompasses mul-

tiple introductions and invasions by species with both asymbiotic and sym-

biotic niches. Beyond obvious comparisons between decomposer and ECM

fungi, salient questions will focus on what features of genomes enable dis-

persal, establishment or spread (Vellinga et al., 2009). The theory suggests

targeting mating systems (is selfing an advantage?), genes involved in

enabling associations with novel hosts (are generalists more likely to establish

or spread? Pringle, Bever, et al., 2009), and genome plasticity perhaps medi-

ated by the diversity of TEs in introduced populations (what do TE

populations look like in native and invasive ranges?). The Amanita offer

an exciting opportunity to push invasion biology in new directions.
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