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Abstract
Fungi are mediators of the nitrogen and carbon cycles in terrestrial ecosystems. Examining how nitrogen uptake and organic
matter decomposition potential differs in fungi can provide insight into the underlying mechanisms driving fungal ecological
processes and ecosystem functioning. In this study, we assessed the frequency of genes encoding for specific enzymes that
facilitate nitrogen uptake and organic matter decomposition in 879 fungal genomes with fungal taxa grouped into trait-based
categories. Our linked gene-trait data approach revealed that gene frequencies vary across and within trait-based groups and that
trait-based categories differ in trait space. We present two examples of how this linked gene-trait approach can be used to address
ecological questions. First, we show that this type of approach can help us better understand, and potentially predict, how fungi
will respond to environmental stress. Specifically, we found that trait-based categories with high nitrogen uptake gene frequency
increased in relative abundance when exposed to high soil nitrogen enrichment. Second, by comparing frequencies of nitrogen
uptake and organic matter decomposition genes, we found that most ectomycorrhizal fungi in our dataset have similar gene
frequencies to brown rot fungi. This demonstrates that gene-trait data approaches can shed light on potential evolutionary
trajectories of life history traits in fungi.We present a framework for exploring nitrogen uptake and organic matter decomposition
gene frequencies in fungal trait-based groups and provide two concise examples on how to use our framework to address
ecological questions from a mechanistic perspective.
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Introduction

Trait-based ecology merges evolution and classic population
and community ecology, with a focus on traits rather than spe-
cies identity. The goal is to better understand the strategies
species use to exploit resources by studying their most critical
attributes [1]. A trait can be any attribute that impacts an organ-
ism’s performance (e.g., gene abundance, growth rate, mor-
phology, nutritional strategy) [2]. In microbial ecology, trait-
based approaches promise to enhance our ability to understand
“the adaptive mechanisms driving ecology and evolution” [3]

and to provide mechanistic explanations to microbially medi-
ated ecosystem functioning. In addition, trait-based approaches
may be especially useful because they can be used to infer
function at a time when the majority of fungal species have
yet to be named or categorized ecologically. Here we focus
on fungi which mediate nitrogen (N) cycling and organic mat-
ter (OM) decomposition in terrestrial ecosystems—two of the
most important processes needed to sustain ecosystem func-
tions [4, 5]. Nitrogen uptake and OM decomposition are ubiq-
uitous traits in fungi but the extent to which these processes are
carried out varies across taxa. For example, all fungi require
exogenous N for growth and survival, but not all can utilize all
forms of N [6]. Similarly, many fungi can metabolize OM but
only some taxa have the capacity to decompose complex or-
ganic compounds such as lignin [7]. The differential distribu-
tion of these traits can influence the functioning of the ecosys-
tems in which they reside. Indeed, in fungal ecology, trait-
based approaches have enriched our understanding of trait var-
iation among fungi and how these traits influence their ecology.
For instance, growth rate varied broadly across 1582 fungal
isolates, but regardless of this variation, this trait was a strong
predictor of wood decomposition [8].
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FUNGuild is a tool that links fungal taxonomical molecular
identity (i.e., ITS) to ecological function by grouping fungal
taxa into four trait-based categories: (1) trophic mode, where
fungi are grouped as symbiotrophs, saprotrophs, or
pathotrophs; (2) functional guild based on the class of envi-
ronmental resources exploited: animal pathogens,
ectomycorrhizal (ECM) fungi, endophytes, plant pathogens,
undefined saprotrophs (i.e., general saprotrophs), and wood
saprotrophs; (3) growth morphology, where fungi are classi-
fied according to their morphological phenotype, such as
agaricoids, boletoids, corticioids, gasteroids, microfungi,
polyporoids, and yeasts (including facultative yeasts); and
(4) rot type based on the ability to decompose certain types
of organic compounds, namely, brown rot, soft rot, and white
rot fungi [9]. This tool has been widely used to explore eco-
logical patterns in high-throughput sequencing data of fungal
communities. For example, climate was observed to be an
important driver of the biogeography of trait-based fungal
groups, with mycorrhizal fungi appearing to have a narrower
climatic tolerance in contrast to pathogenic fungi which toler-
ate broader climatic conditions [10]. Growth morphology was
shown to be a key factor influencing the biogeography of
fungal communities and how fungi respond to abiotic condi-
tions, irrespective of taxonomic identity [11].

While FUNGuild groups fungal taxa by their functional
attributes, MycoCosm is a fungal genomic database that pro-
vides access to the complete genomes of over 1000 fungal
taxa [12]. Treseder and Lennon [13] used this database to
identify key relationships among genes involved in stress tol-
erance, N uptake, and OM decomposition and linked these
relationships to fungal growth morphology. More recently,
Zanne and collaborators [14] expanded on this, describing
how trait variation and gene copy number of key proteins
involved in OM decomposition and stress tolerance vary
across functional guilds of plant-associated fungi. Similarly,
Nagy et al. [15] identified six fungal traits and linked them to
genes and gene families associated with the development of
fruiting bodies, mycorrhizal life strategy, and the ability to
decompose wood, among others. However, applying this
knowledge to advance ecological research has remained a
challenge.

In this study, we aimed to showcase how linking genes to
traits in fungi can be used to forward ecological research. We
assessed the frequency of genes encoding for specific en-
zymes that facilitate N uptake and OM decomposition in near-
ly 1000 fungal genomes obtained fromMycoCosm, with fun-
gal taxa grouped into FUNGuild trait-based categories. We
then examined how these gene frequencies compared and
contrasted among fungal trait-based categories. We present
two examples showing how this linked gene-trait data can
be used to address questions in ecological research. In the first
example, we used previously published fungal RNA data col-
lected from the Chronic Nitrogen Amendment Study (CNAS)

at the Harvard Forest Long-term Ecological Research (LTER)
site, in conjunction with the gene frequency data obtained
from MycoCosm, to address the question: does knowing
something about the frequencies of N uptake and OM decom-
position genes of fungal functional groups provide insight into
expected fungal responses under simulated N fertilization?
This question was motivated by decades of research showing
that in temperate forest ecosystems, simulated N deposition
often results in OM accumulation [16–18] due to a combina-
tion of mechanisms [19–22], including fungal community
shifts [23].

In the second example, we examined the frequencies of N
uptake and OM decomposition genes in 62 different
ectomycorrhizal (ECM) fungal taxa to examine how gene
frequencies vary within a single functional guild and to ask
the question: what can we learn about ECM life history traits
by comparing the frequencies of N uptake and OM decompo-
sition genes to those of fungi categorized by rot type (i.e.,
brown, soft, or white rot)? This question derived from evi-
dence showing that the evolutionary history of ECM fungi is
polyphyletic [24]. That is, ECM fungi are symbiotrophs that
evolved multiple times from ~ 60 independent saprotrophic
lineages, many having evolved from brown and white rot
ancestors [24, 25]. The identity of the lineage of many ECM
fungi is still unknown, but phylogenetic analyses show that
their evolution is associated with a shift in nutritional mode
and the differential loss of OM decomposition genes [24, 26].
Evidence shows that some ECM taxa have the capacity to
decay soil organic matter to mobilize soil organic N but that
their ability to decay and access N depends on their evolution-
ary origin [27, 28]. Thus, a closer look at N uptake and OM
decomposition gene frequencies of individual ECM species
compared to those of fungi closely related to prospective
ECM phylogenetic ancestors can potentially further our un-
derstanding of the ecology and evolution of ECM fungi [e.g.,
24].

Materials and Methods

Fungal Functional Trait-Based Classification

We collected public genomic data from the US Department of
Energy 1000 Fungal Genomes Project (i.e., MycoCosm) and
created a database comprising a total of 983 genomes,
representing nine fungal phyla or subphyla, 118 orders, 296
families, and 571 genera [12, 29]. We obtained the internal
transcribed spacer (ITS) region for each species present in our
genome list through NCBI taxonomy [30] and GenBank
(Supplementary Table 1). We then used the ITS region to
classify species into functional trait-based groups (i.e., trophic
mode, functional guild, growth morphology, and rot type)
using FUNGuild [9]. A total of 104 genomes could not be
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assigned to any group, leaving 879 genomes for further anal-
ysis. Of these, 217 species fell under two or more categories
for trophic mode and 248 species under two or more catego-
ries for functional guild. For these, we manually curated the
list and designated a single category to each species (e.g.,
“final trophic mode” in Supplementary Table 1). If a species’
trophic mode was classified as pathotroph-saprotroph but its
functional guild was plant pathogen, we classified the final
trophic mode as pathogen. Similarly, if a species was de-
scribed as pathotroph-saprotroph or saprotroph-symbiotroph
or pathotroph-saprotroph-symbiotroph and belonged to a rot
type, we classified it as saprotroph (the latter was only the case
for one genome, Acremonium spp.). At the functional guild
level, if a species was classified as undefined saprotroph-
wood saprotroph or some other combination of functional
guilds and belonged to a type of rot, we classified it as wood
saprotroph (e.g., Xylaria hypoxylon). Moreover, we examined
the description for each genome as given inMycoCosm; if the
description provided insight into a species’ function (e.g.,
pathogenic), we used that information to designate the final
trophic mode. If a species was classified into all three possible
trophic mode categories (i.e., pathotroph-saprotroph-
symbiotroph), and we were unable to convincingly designate
one final category using the approaches described above (for
< 5% of species, or 44 of 983 genomes), we did a literature
search using Google Scholar and designated the final trophic
mode based on the top ten most highly cited papers. In gen-
eral, trait-based saprotrophs are categorized as undefined (i.e.,
general) or wood saprotrophs, symbiotrophs as endophytes or
ECM, and pathotrophs as plant or animal pathogens. We ex-
cluded genomes from underrepresented groups (i.e., groups
with n < 10 genomes), such as arbuscular mycorrhizal fungi,
dung saprotrophs, litter saprotrophs, leaf saprotrophs, etc. to
avoid drawing conclusions from insufficient data. A complete
list of all genomes is available in Supplementary Table 1.

Gene Frequencies of Fungal Functional Trait-Based
Groups

We determined, for each genome, the number of gene copies for
N uptake and OM decomposition gene families (Table 1) be-
cause gene copy number modulates gene expression and can
contribute to significant phenotypic variation [31]. We used am-
monium and nitrate transporter gene families as indicators for
uptake potential of inorganic N; amino acid permeases as indi-
cators for potential of organic N uptake; lignin peroxidase for the
potential to modify lignin, a recalcitrant organic C compound
found in many plants; and cellobiohydrolase, β-Glucosidase,
and lytic polysaccharide monooxygenase for potential to decay
cellulose, the most abundant polymer on Earth [32]. We chose
these gene families because they represent important traits rele-
vant to ecosystem N and C cycling processes [13, 33–35]. By
using gene families rather than individual genes, we were able to

cover a broader set of genes, some of which are not yet fully
characterized for many fungal species but, that by homology, we
know are present in their genomes. We calculated gene frequen-
cy as the number of genes per 10,000 genes to standardize for
genome size, following a similar approach used by Treseder and
Lennon [13] and Siletti and collaborators [36].We grouped gene
families into N uptake and OM decomposition groups (Table 1).
For each, we carried out a one-way analysis of variance
(ANOVA) with functional group as an independent categorical
variable and N uptake or OM decomposition gene frequency as
the dependent variable. We did similar analyses for each one of
the different gene families and determined significant pairwise
comparisons with Tukey HSD post hoc tests using a 95% con-
fidence interval among groups. In all cases, we determined sig-
nificant differences at P ≤ 0.05. We used R for all tests [37].

Example #1: Using Linked Gene-Trait Data to Examine
the Response of Fungal Functional Trait-Based Groups
to Long-Term Simulated Nitrogen Deposition

The CNAS at the Harvard Forest LTER, initiated in 1988 to
examine the long-term consequences of high cumulative rates
of N additions to forest ecosystems [38, 39], consists of three
30 × 30 mmega plots subdivided into thirty-six 5 × 5 subplots
which are treated as experimental replicates. One mega plot is
the control (N0; ambient N deposition is currently 7–9 kg N
ha−1 yr−1 at this site [40]) and the other two mega plots receive
one of the following treatments as liquid NH4NO3 fertilizer on
a monthly basis during the growing season: N50 (50 kg N
ha−1 yr−1) or N150 (150 kg N ha−1 yr−1). The N50 plot repre-
sents an N deposition scenario predicted for 2050 [41], while
the N150 plot represents an N saturation scenario. Previous
work has confirmed strong treatment effects not caused by
random variation [16, 19, 23, 42, 43].

We used previously published soil fungal ribosomal RNA
(rRNA) data collected from the CNAS [42] to investigate if
knowing something about the frequencies of N uptake and
OM decomposition genes of fungal functional groups pro-
vides insight into observed fungal responses under simulated
N deposition. To answer this question, we calculated the N
response as the total number of RNA reads in the treated
relative to control plots (Supplementary Table 2). We used
RNA because RNA is considered an indicator of “metaboli-
cally active” taxa [44]. We grouped reads by taxa, assigned
functional categories using FUNGuild, and calculated N re-
sponse as:

Nitrogen Response ¼ N50 or N150 RNA reads
N0 RNA reads

� �
−1

When RNA reads were present in control but absent in N50
or N150, we assigned a value of − 1 to indicate a decrease
under N. When RNA reads were present in N50 or N150, but
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absent in N0, we assigned a value of 1 to indicate an increase
under N. Any taxon that increased or decreased by a magni-
tude of 3 or more were eliminated from our analysis; the effect
of these outliers was analyzed in Morrison and collaborators
[42]. Despite removing outliers and working with total RNA
reads rather than relative abundance data, our results were
comparable to those reported previously [42]. We conducted
a one-sample t test for each trait-based category and compared
the mean N response to μ = 0. Trait-based categories with a
significant positive N response had a greater abundance of
RNA reads under N addition compared to control, while those
with a significant negative N response had a lower abundance
of RNA reads under N addition compared to control.

Example #2: Using Linked Gene-Trait Data to Gain Insight
into the Life History Traits of Ectomycorrhizal Fungi

We extracted gene frequency data for all genomes listed as
ECM fungi at the functional guild level (Supplementary
Table 1). In addition, we calculated the average frequency
for N uptake and OM decomposition genes for all genomes
classified as brown rots, soft rots, and white rots. We asked,
what can we learn about ECM life history traits by comparing
the frequencies of N uptake and OM decomposition genes to
those of fungi categorized by rot type (i.e., brown, soft, or
white rot)? To address this question, we compared N uptake
and OM decomposition gene frequencies of each ECM ge-
nome to the average gene frequencies for brown rots, soft rots,
and white rots. A list of all ECM fungi, their gene frequencies,
and their color-coded taxonomical classification is available in
Supplementary Table 3.

Results and Discussion

Gene Frequencies of Fungal Functional Trait-Based
Groups

The average frequency of N uptake and OM decomposition
genes varies widely, both within and across fungal functional

groups (Fig. 1). Even though the uptake of N and decompo-
sition of OM are both energetically expensive processes, we
did not find evidence at the gene level that fungi preferentially
invest more heavily in one of these processes at the expense of
the other, suggesting both are critical to the ecological success
of fungi. That is, there was no significant negative correlation
between N uptake and OM decomposition gene frequencies
(Supplementary Fig. 1). There are a few notable exceptions to
this general finding, namely, that yeasts and animal pathogens
have high N uptake, but low OM decomposition gene fre-
quency, while white rots and polyporoids display the opposite
pattern.

Examining the trait space of N uptake versus OM decom-
position gene frequencies for each trait-based group (Fig. 2),
we see that trophic mode (Fig. 2 A) offers narrow resolution
across categories, especially between saprotrophs and
pathotrophs, compared to the other three categories which
show broad resolution (Fig. 2, B, C, and D). When the trait
space is divided into quartiles, we see that symbiotrophs,
ECM fungi, boletoids, and brown rots have, in general, low
N uptake and OM decomposition gene frequency.
Contrastingly, general saprotroph, microfungi, and soft rots
have a relatively high frequency of N uptake and OM decom-
position genes. Wood saprotrophs, polyporoids, agaricoids,
corticioids, and white rot fungi have low N uptake but high
OM decomposition gene frequencies, while animal pathogens
and yeasts have high N uptake, but low OM decomposition
gene frequencies. Fungi with significantly higher frequency of
N uptake genes (i.e., yeasts) are known for their ability to
withstand stress and grow in a variety of N sources [46–49].
Contrastingly, fungi with significantly higher frequencies of
OM decomposition genes (i.e., polyporoids, wood
saprotrophs, and white rots) are adapted to survive in
carbon-rich environments such as rotting wood, as well as to
exploit complex carbon substrates, such as lignin [50, 51].
This type of broad trait-based information can be useful for
ecological trait-based modelling, as generalities can more eas-
ily be turned into parameters to input in mathematical models
[52, 53]. In addition, terrestrial biosphere models require gen-
eration of belowground trait-based ecological information,

Table 1 Gene family domains encoding for enzymes responsible for N uptake and organic matter (OM) decomposition [13]

Group Trait Enzyme Gene family domain

N uptake Uptake of inorganic N Ammonium transporter IPR001905

Nitrate transporter IPR004737

Uptake of organic N Amino acid permease IPR004762

OM decomposition Decomposition of cellulose Cellobiohydrolase IPR001722

β-Glucosidase IPR001360

Lytic polysaccharide monooxygenase IPR005103

Decomposition of lignin Lignin peroxidase IPR001621
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such as we provide here, to informmodel inputs of fine spatial
and temporal resolution models [54].

However, for each fungal group and gene family, results were
nuanced (Fig. 3). Disaggregated data shows that there are outliers
present in every trait-based group for every gene family. For
example, even though the average ammonium transporter gene
frequency is significantly different between the general
saprotroph and ECM categories, genomes on the lower end of
general saprotrophs overlap with the mean value of ECM. But as
discussed by others [55], trait-based approaches are intended to
move beyond “individual-centric” or “species-centric” results.
This is especially true for trait-based approaches in ecosystem
or global-scale ecologywhere a few outliers likely have nomajor
impact on large-scale processes [56]. However, some challenge
this view and argue that outliers can help us better understand
ecosystem functioning and that the relative abundance of outliers
needs to be considered [57].

Example #1: Response of Fungal Functional Trait-Based
Groups to Long-Term Simulated Nitrogen Deposition

Over three decades of research at the CNAS at the Harvard
Forest LTER, it has shown that long-term simulatedNdeposition
results in OM accumulation [16–18] partially due to shifts in the
fungal community [23]. Our trait-based analysis ofMorrison and
collaborators’ data [23] showed that saprotroph, animal

pathogen, endophyte, general saprotroph, and yeast categories
have a positive N response at the highest N treatment (i.e.,
N150) (Fig. 4, Supplementary Table 2). In contrast, agaricoids
showed a significant negative N response. Endophytes were the
only category with a significant N response at both levels of N
addition. Plant pathogen, wood saprotroph, and ectomycorrhizal
fungi exhibited negative N responses at N50 or N150, but these
were not significant. Similarly, white rot fungi showed a positive,
but non-significant N response.

All the trait-based categories showing a significant positive
N response had high N uptake gene frequency (Fig. 1).
Specifically, animal pathogen, endophytes, general
saprotroph, and yeast have high gene frequency for ammoni-
um transporters and amino acid permeases (Fig. 3). Trait-
based categories with higher gene frequency of ammonium
transporters, such as yeasts, might be better at metabolizing
N, which is very abundant at the CNAS andmay provide them
with a competitive advantage over groups with lower gene
frequency. For example, the yeast Yarrowia spp. can use
many different organic and inorganic N sources [58, 59].
The relatively higher frequency of ammonium transporter
genes is likely the reason underlying this ability; moreover,
transmembrane N transporter genes in yeasts are prone to
selection and are rapidly evolving [60–62]. It is important to
note that even though soft rots have a high N uptake gene
frequency, we did not include them in our analyses because

Fig. 1 Frequency of N uptake and OM decomposition genes for each
fungal trait-based category. Data represents the average gene frequency of
analyzed genomes per category shown in parenthesis. Error bars indicate
SE. Different compact letters denote post hoc significant differences (P ≤

0.05) in average N uptake or OM decomposition gene frequency with
category used as independent variable within each trait-based group.
^References: [9, 45]
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they were not sufficiently replicated in our Example #1 dataset
and did not allow for proper statistical analyses. However, two
soft rot taxa had a positive N response at N50, and three taxa
had a positive N response at N150 (Supplementary Table 2).
Nonetheless, gene frequency does not necessarily indicate
higher gene expression but does suggest functional potential.
As the field of microbial trait-based ecology develops, linking
gene expression with gene frequency and traits will be
essential.

Our first example suggests that using linked gene-trait data is
predictive of how the fungal community will respond under N
deposition, but only when the system is exposed to extreme
conditions (i.e., high levels of exogenous N) asmost N responses
were significant at N150 (Fig. 4B). Regardless, using trait-based
groupings provides more predictive power than taxonomy; when
analyzed at the order level, taxonomic classification provided no
clear predictive power (Supplementary Fig. 2). For example, the
Hypocreales and Chaetothyriales displayed a significant positive
N response (Supplementary Fig. 2A) but neither one of those
taxonomical orders stands out for having high N uptake gene
frequency (Supplementary Fig. 2B). In addition, the trait-based
categories included in our study are scattered across the entire
fungal tree of life (Supplementary Fig. 3); thus, phylogenetic

approaches for predicting fungal traits which are relevant at the
ecosystem scale may be challenging. Even though other studies
have shown that certain fungal traits are phylogenetically con-
served across taxa [e.g., 63], some of these traits may not be
relevant for ecosystem-scale functional processes [64]. But phy-
logenetic analyses of ecologically relevant traits could provide a
better understanding of the evolution and life history traits of
fungi. This is particularly important because others have found
phylogenetic signals for certain OM decomposition enzymes
where decomposition abilities were more similar among phylo-
genetic lineages than among functional guilds [65]. Most trait-
based categories in FUNGuild, as well as the gene families we
included in our analysis, may be too broad to identify phyloge-
netic signals, whereas examining specific traits, such as the abil-
ity to produce specific enzymes encoded by a single gene, may
be a better approach for searching for phylogenetic signals.

Example #2: Insight into the Life History Traits
of Ectomycorrhizal Fungi

The evolutionary histories of ECM fungi are challenging to
study because of the polyphyletic nature of the ECM niche
and the diversity of saprotrophic lineages from which ECM

Fig. 2 Trait space showing N uptake versus OM decomposition gene frequencies by trait-based group
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fungi evolved [24, 25]. A comparison of the frequencies of N
uptake and OM decomposition genes of individual ECM fun-
gi with those of different fungal rot types shows most ECM
fungi with sequenced genomes (at least those available in
MycoCosm) have gene frequencies similar to brown rot fungi
(Fig. 5, Supplementary Table 3). However, the clustering of
ECM genomes with the genomes of brown rot fungi likely
reflects at least two evolutionary trajectories: a shared evolu-
tionary history, for example, various Boletales, appears to
have derived from brown rot lineages [24] and in these cases
clustering probably reflects common ancestry. But various
other genomes with gene frequencies similar to brown rots,
including species of the Russulales and Pezizales, are not phy-
logenetically close to brown rot clades [66]. These genomes
highlight the potential for a second evolutionary path involv-
ing convergent evolution towards a particular gene space.
Both trajectories result in similar frequencies of N uptake
and OM decomposition genes.

On the whole, sequenced ECM genomes appear to have
divergent functional potentials for both OM depolymerization
and N uptake. Genomes with similar gene frequency distribu-
tions to white rot fungi, for example, the Cantharellales and
Gomphales, are likely to have vastly different effects on eco-
system C and nutrient cycling compared to ECMmore similar

to soft rot fungi, for example, the Helotiales. A recently pub-
lished comprehensive study of 62 mycorrhizal species also
suggests a broad variation in the capacity of mycorrhizal fungi
to acquire C from soil OM [67]. Nonetheless, most ECM
genomes appear in brown rot gene space (Fig. 5): whether
the pattern reflects a real ecological dynamic or is an artifact
of the genomes available to date is unknown, but we suggest it
would be useful for future sequencing efforts to target organ-
isms appearing to fall in between the different rot types (Fig.
5), potentially by including species of the Geastrales,
Agaricales, and Mytilinidiales. We targeted specific sets of
genes in our analyses (Table 1) but at least a few ECM fungi
take alternate routes to depolymerize carbon (e.g., Fenton
chemistry) [68–70]. Additional analyses targeting different
sets of genes or measuring enzyme production may reveal
additional capacities for OM decomposition or provide addi-
tional information about patterns in gene space (Fig. 5).

Conclusion

The variety of traits in fungi is vast [8, 14, 53, 71]. In this study,
we examined trait-based groups as defined by FUNGuild and
focused on seven broad gene families, with this dataset being

Fig. 3 Box and whisker plots showing the distribution of gene
frequencies with lower and upper quartiles, average, and lowest and
highest observations plotted. Each point represents an individual

genome. Different letters denote significant differences within each
gene family and fungal trait-based group (P ≤ 0.05). Detailed information
on each genome can be found in Supplementary Table 1
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useful for addressing specific questions that concern N uptake
and OM decomposition. We found that the average frequency
of N uptake and OM decomposition genes varies across fungal
trait-based groups and within trait-based categories. The N

uptake–OM decomposition trait space across different functional
groups showed differential resolution.We show that using linked
gene-trait data can provide a better understanding and potentially
predict how fungi will likely respond to environmental stress

Fig. 5 Frequency of nitrogen uptake and OM decomposition genes for
individual ectomycorrhizal taxa (numbered) in contrast with the average
gene frequency for white, brown, and soft rot fungi (labeled in graph).

Identification number, species, and other taxonomical information are
provided in Supplementary Table 3

Fig. 4 Nitrogen response of fungal functional trait-based groups based on
total rRNA reads as measured by high-throughput sequencing of soil
collected from (A) N50 and (B) N150 plots at the Chronic Nitrogen
Amendment Study at the Harvard Forest LTER site. Bars show average
± SE. Results are significant when means are significantly higher or lower

than a mean of 0 (t test p = 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***). A
significant positive response represents an increase in abundance of
rRNA reads under elevated nitrogen, while a significant negative re-
sponse indicates a decrease
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under extreme conditions. These predictions are especially rele-
vant, given that these conditions are becoming more frequent due
to global climate change. Moreover, we show that exploring
linked gene-trait data can help us to understand life history traits
in fungi. Ourwork provides a framework to exploreN uptake and
OM decomposition gene frequencies in fungal trait-based groups
and address ecological questions from a mechanistic view.

Since many ecological modelling trait-based efforts often
focus on tradeoffs [72–74], it is essential to mention that we
did not find evidence of tradeoffs at the gene frequency level
(i.e., higher N uptake and low OM decomposition gene fre-
quency or vice versa). However, this does not suggest that
gene frequency level tradeoffs for other important traits and
processes are not present in trait-based groups. For example,
exploring gene frequencies of stress tolerance genes may re-
veal a gene-level tradeoff when compared to OM decomposi-
tion [72]. Furthermore, higher gene frequency might not di-
rectly relate to gene expression; thus, our results only suggest
the potential to take up different forms of N and to decompose
different OM compounds. Gene expression data on trait-based
groups is still needed. Regardless, our results are some of the
very first to link gene frequencies to fungal traits and show-
case the use of linked gene-trait data in two specific examples.
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